scholarly journals Reversible Data Hiding for DICOM Image Using Lifting and Companding

Cryptography ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 21 ◽  
Author(s):  
Amit Phadikar ◽  
Poulami Jana ◽  
Himadri Mandal

In this work, a reversible watermarking technique is proposed for DICOM (Digital Imaging and Communications in Medicine) image that offers high embedding capacity (payload), security and fidelity of the watermarked image. The goal is achieved by embedding watermark based on companding in lifting based discrete wavelet transform (DWT) domain. In the embedding process, the companding technique is used to increase the data hiding capacity. On the other hand, a simple linear function is used in companding to make the scheme easy to implement, and content dependant watermark is used to make the scheme robust to collusion operation. Moreover, unlike previously proposed reversible watermarking techniques, this novel approach does not embed the location map in the host image that ultimately helps to achieve high fidelity of the watermarked image. The advantage of the proposed scheme is demonstrated by simulation results and also compared with selected other related schemes.

2014 ◽  
Vol 6 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Shun Zhang ◽  
Tie-gang Gao ◽  
Fu-sheng Yang

A reversible data hiding scheme based on integer DWT and histogram modification is proposed. In the scheme, the cover media is firstly transformed by Integer DWT (Discrete Wavelet Transformation); then information is embedded through the modification of histograms of the middle and high frequency sub-bands of the DWT coefficients. In order to increase the embedding capacity, a multi-level scheme is proposed, which achieved both high embedding capacity and reversibility. Extensive experimental results have shown that the proposed scheme achieves both higher embedding capacity and lower distortion than spatial domain histogram modification based schemes; and it achieved better performance than integer DCT (Discrete Cosine Transformation) based histogram modification scheme.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dinh-Chien Nguyen ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Huan-Sheng Hsueh ◽  
Fang-Rong Hsu

Data hiding is a technique that allows secret data to be delivered securely by embedding the data into cover digital media. In this paper, we propose a new data hiding algorithm for H.264/advanced video coding (AVC) of video sequences with high embedding capacity. In the proposed scheme, to embed secret data into the quantized discrete cosine transform (QDCT) coefficients of I frames without any intraframe distortion drift, some embeddable coefficient pairs are selected in each block, and they are divided into two different groups, i.e., the embedding group and the averting group. The embedding group is used to carry the secret data, and the averting group is used to prevent distortion drift in the adjacent blocks. The experimental results show that the proposed scheme can avoid intraframe distortion drift and guarantee low distortion of video sequences. In addition, the proposed scheme provides enhanced embedding capacity compared to previous schemes. Moreover, the embedded secret data can be extracted completely without the requirement of the original secret data.


Cryptography ◽  
2020 ◽  
pp. 480-497
Author(s):  
Lin Gao ◽  
Tiegang Gao ◽  
Jie Zhao

This paper proposed a reversible medical image watermarking scheme using Redundant Discrete Wavelet Transform (RDWT) and sub-sample. To meet the highly demand of the perceptional quality, the proposed scheme embedding the watermark by modifying the RDWT coefficients. The sub-sample scheme is introduced to the proposed scheme for the enhancement of the embedding capacity. Moreover, to meet the need of security, a PWLCM based image encryption algorithm is introduced for encrypting the image after the watermark embedding. The experimental results suggests that the proposed scheme not only meet the highly demand of the perceptional quality, but also have better embedding capacity than former DWT based scheme. Also the encryption scheme could protect the image contents efficiently.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091100
Author(s):  
Yi Chen ◽  
Hongxia Wang ◽  
Xiaoxu Tang ◽  
Yong Liu ◽  
Hanzhou Wu ◽  
...  

Developing the technology of reversible data hiding based on video compression standard, such as H.264/advanced video coding, has attracted increasing attention from researchers. Because it can be applied in some applications, such as error concealment and privacy protection. This has motivated us to propose a novel two-dimensional reversible data hiding method with high embedding capacity in this article. In this method, all selected quantized discrete cosine transform coefficients are first paired two by two. And then, each zero coefficient-pair can embed 3 information bits and the coefficient-pairs only containing one zero coefficient can embed 1 information bit. In addition, only one coefficient of each one of the rest coefficient-pairs needs to be changed for reversibility. Therefore, the proposed two-dimensional reversible data hiding method can obtain high embedding capacity when compared with the related work. Moreover, the proposed method leads to less degradation in terms of peak-signal-to-noise ratio, structural similarity index, and less impact on bit-rate increase.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chunqiang Yu ◽  
Xianquan Zhang ◽  
Zhenjun Tang ◽  
Yan Chen ◽  
Jingyu Huang

Data hiding in encrypted image is a recent popular topic of data security. In this paper, we propose a reversible data hiding algorithm with pixel prediction and additive homomorphism for encrypted image. Specifically, the proposed algorithm applies pixel prediction to the input image for generating a cover image for data embedding, referred to as the preprocessed image. The preprocessed image is then encrypted by additive homomorphism. Secret data is finally embedded into the encrypted image via modular 256 addition. During secret data extraction and image recovery, addition homomorphism and pixel prediction are jointly used. Experimental results demonstrate that the proposed algorithm can accurately recover original image and reach high embedding capacity and good visual quality. Comparisons show that the proposed algorithm outperforms some recent algorithms in embedding capacity and visual quality.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750013 ◽  
Author(s):  
Santi P. Maity ◽  
Hirak Kumar Maity

This paper proposes a reversible contrast mapping (RCM)-based reversible watermarking (RW) algorithm (RCM-RW) where optimal distortion thresholds adaptive to the image characteristics are used. A generalized form of RCM is developed using a set of transformation functions; each one may be considered as a point on a straight line, called here as operating point. Each operating point offers trade-off benefits on embedding distortion, data hiding capacity and security for the hidden data. The choice of an operating point is governed by adaptive distortion control thresholds, the values depend on the partitioning of the images on smooth, texture and edge regions. However, region-specific optimal distortion threshold is difficult to represent in closed-form expression. Genetic algorithms (GAs), due to their complex searching nature, are used here for calculating the set of distortion thresholds. Simulation results show that high embedding capacity, improved security and imperceptibility of the hidden information can be met simultaneously using a particular combination of such operating points on optimal basis. Extensive simulation results show that the proposed method outperforms the existing RW techniques.


2018 ◽  
Vol 10 (2) ◽  
pp. 40-55
Author(s):  
Lin Gao ◽  
Tiegang Gao ◽  
Jie Zhao ◽  
Yonglei Liu

This article proposed a reversible digital image watermarking scheme using PVO and Redundant Discrete Wavelet Transform (RDWT). The PVO was introduce to the proposed scheme to enhance the embedding capacity. By embedding the watermark in the RDWT coefficients, the proposed scheme exploited the visual masking property of RDWT to achieve better visual quality. Also, the proposed scheme has better performance on embedding capacity because the RDWT has several sub-band coefficients for embedding. The experimental results on natural and medical images suggests that the proposed scheme could meet the demand of perceptional quality with better embedding capacity than former schemes.


Sign in / Sign up

Export Citation Format

Share Document