scholarly journals Synthesis, Crystal Structures, and Molecular Properties of Three Nitro-Substituted Chalcones

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1589
Author(s):  
Alam Yair Hidalgo ◽  
Manuel Velasco ◽  
Eduardo Sánchez-Lara ◽  
Abraham Gómez-Rivera ◽  
Miguel A. Vilchis-Reyes ◽  
...  

Three functionalized chalcones containing combinations of nitro functional groups have been synthesized via Claisen-Schmidt condensation between 2-nitroacetophenone and nitrobenzaldehyde, and the crystal structures obtained ((E)-1,3-bis(2-nitrophenyl)prop-2-en-1-one, 1a, (E)-1-(2-nitrophenyl)-3-(3-nitrophenyl)prop-2-en-1-one, 1b and (E)-1-(2-nitrophenyl)-3-(4-nitrophenyl)prop-2-en-1-one, 1c), C15H10N2O5, are reported. Compounds 1a and 1c crystallized in the triclinic centrosymmetric space group P1¯, whereas compound 1b crystallized in the orthorhombic space group Pbca. The X-ray analysis reveals that structures 1a and 1b exhibits s-trans conformation, whereas structure 1c exists in s-cis conformation, concerning the olefinic double bonds. In addition, the results show that the position of the nitro substituent attached to the aromatic B-ring has a direct effect on the molecular coplanarity of these compounds. The Hirshfeld surface analysis suggests that the non-covalent π-π stacking interactions are the most important contributors for the crystal packing of 1a and 1b. In 1c, the crystal packing is mainly stabilized by weak intermolecular C―H···O interactions due to the planar nature of the molecule.

2003 ◽  
Vol 58 (7) ◽  
pp. 620-626 ◽  
Author(s):  
Franziska Emmerling ◽  
Caroline Röhr

The new alkaline metal arsenates(III) were synthesized at a temperature of 500 °C via reaction of stoichiometric mixtures of the elemental alkali metals A and As2O3. In the crystal structures of the four title compounds, which have been determined by single crystal x-ray diffraction, the As(III) atoms are in ψ-tetrahedral coordination by oxygen exclusively. In NaAsO2 (orthorhombic, space group Pbcm, a = 1429.6(9), b = 677.3(3), c = 509.1(2) pm, Z = 8) and the compounds AAsO2 (A = K/Rb, orthorhombic, space group Pbcm, a = 715.1(2)/729.7(5), b =748.0(1)/775.2(5), c = 539.20(17)/541.1(3) pm, Z = 4) the AsO3 ψ-tetrahedra are condensed to form zig-zag chains [AsOO2/2]−. In the Cs phase Cs3As5O9 with a lower alkaline metal content (trigonal, space group P31m, a = 845.5(3), c = 602.6(2) pm, Z = 1) the two crystallographically independent ψ-tetrahedra AsO3/2 and AsOO2/2 are connected in a 2:3 ratio to give polar sheets [As5O9]3−.


1997 ◽  
Vol 50 (9) ◽  
pp. 903 ◽  
Author(s):  
Trevor W. Hambley ◽  
Walter C. Taylor ◽  
Stephen Toth

Four novel norditerpenoids were isolated from a new encrusting sponge, conveniently labelled Aplysilla pallida. The structures of aplypallidenone (1), aplypallidoxone (2), aplypallidione (3) and aplypallidioxone (4) were elucidated by spectroscopic studies and the crystal structures of aplypallidenone and aplypallidoxone have been determined by X-ray diffraction methods. The structure of (1) was refined to a residual of 0·040 for 1665 independent observed reflections and the structure of (2) was refined to a residual of 0·031 for 1699 independent observed reflections. The crystals of (1) are orthorhombic, space group P212121, a 7·728(2), b 10·838(4), c 24·880(5) Å, Z 4. Those of (2) are monoclinic, space group C 2, a 23·927(7), b 6·674(2), c 14·033(3) Å, Z 4.


2011 ◽  
Vol 66 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Olaf Reckeweg ◽  
Armin Schulz ◽  
Francis J. DiSalvo

Single crystals of Eu5(BO3)3Cl were obtained by serendipity by reacting Eu2O3 and Mg with B2O3 at 1300 K in the presence of an NaCl melt for 13 h in silica-jacketed Nb ampoules. Ba5(BO3)3X (X = Cl, Br) crystals were formed by direct synthesis from appropriate amounts of Ba(OH)2, H3BO3 and the respective barium halide (hydrate) in alumina crucibles kept in the open atmosphere at 1300 K for 13 h. The crystal structures of the title compounds were determined with single-crystal X-ray diffraction. All compounds crystallize isotypically to Sr5(BO3)3Cl in the orthorhombic space group C2221 (no. 20, Z = 4) with the lattice parameters a = 1000.34(7), b = 1419.00(9), c = 739.48(5) pm for Eu5(BO3)3Cl, a = 1045.49(5), b = 1487.89(8), c = 787.01(4) pm for Ba5(BO3)3Cl, and a = 1048.76(7), b = 1481.13(9) and c = 801.22(5) pm for Ba5(BO3)3Br. The Raman spectra of all compounds were acquired and are presented and compared to literature data. The incremental volume of the orthoborate (BO3)3− anion has been determined and is compared to the Biltz volume


1998 ◽  
Vol 53 (2) ◽  
pp. 206-210 ◽  
Author(s):  
D. Sonnak ◽  
W. Preetz

Abstract X-ray structure determinations have been performed on single crystals of trans-(Ph4P)2-[B6H4I2] (1) (triclinic, space group P1̄, a = 9.9680(12), b = 10.9690(11), c = 11.0470(14) Å,α = 88.167(9), β = 80.466(12), γ = 68.839(11)°, Z = 1), mer-(Ph4P)2[B6H3I3] · 2 CH2Cl2 (2)(triclinic, space group P1̄, a = 11.8694(11), b = 15.1699(13), c = 17.051(2) Å, α = 75.118(9), β = 71.953(10), γ = 69.331(8)°, Z = 2), trans-(Ph4P )2[B6H2I4] · 2 CH3CN (3) (monoclinic, space group P21/n, a = 14.9665(10), b = 7.6783(10), c = 23.385(3) Å, β = 95.78(9)°, Z = 2), and (CH2Py2)[B6HI5] (4) (orthorhombic, space group Pnma, a = 13.660(2), b = 11.8711(13), c = 13.839(2) Å, Z = 4). The B6 octahedra are compressed in the direction of the B-I bonds, resulting in shortened diagonal B ··· B distances with average values of the groups I-B ··· B-I = 2.37 and I-B ··· B-H = 2.43 Å as compared with H-B ··· B-H = 2.49 Å.


1999 ◽  
Vol 64 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Bohumil Kratochvíl ◽  
Alexandr Jegorov ◽  
Svetlana Pakhomova ◽  
Michal Hušák ◽  
Petr Bulej ◽  
...  

The structures of O-acetyl-(4R)-4-(E-2-butyl)-4,N-dimethyl-L-threonyl-cyclosporin A (1) and O-acetyl-(4R)-4-[E-2-(4-bromobutyl)]-4,N-dimethyl-L-threonyl-cyclosporin A (2) were determined by X-ray diffraction methods and compared with the structure of related cyclosporins. In contrast to expectation, neither the acetylation nor the subsequent bromination of 1 affects the conformation and packing of cyclosporins in the solid state. Both compounds are isomorphous and crystallize in the orthorhombic space group P212121 with a = 12.936(2) Å, b = 15.590(2) Å, c = 36.280(3) Å, and a = 12.916(3) Å, b = 15.675(4) Å, c = 36.715(7) Å, for 1 and 2, respectively.


1982 ◽  
Vol 35 (2) ◽  
pp. 457 ◽  
Author(s):  
RM Carman ◽  
SS Smith ◽  
CHL Kennard ◽  
G Smith ◽  
AH White ◽  
...  

The crystal structures of two γ-lactones of the bicyclo[2,2,2]octane series, endo-3-carboxy-exo-5- iodobicyclo[2,2,2]octane-2,6-carbolactone (2; R = CO2H) and exo-3-methoxycarbonyl-endo-5-acetoxybicyclo[2,2,2] octane-2,6-carbolactone (7b), have been determined by direct methods from three-dimensional X-ray data and refined by least-squares to final residuals of 0.033 (2; R = CO2H) and 0.036 (7b) for 1918 and 630 'observed' reflections respectively. Crystals for (2; R = CO2H) are monoclinic, space group P21/c with Z 8 in a cell of dimensions a 7.192(2), b 23.785(8), c 13.199(5) �, β 105.35(2)�, while (7b) crystallizes in the orthorhombic space group P212121 with Z 4 in a cell of dimensions a 13.347(7), b 11.839(7), c 8.227(11) �.


2005 ◽  
Vol 61 (6) ◽  
pp. 717-723 ◽  
Author(s):  
Patricia Lozano-Casal ◽  
David R. Allan ◽  
Simon Parsons

The crystal structure of cyclopropylamine at 1.2 GPa has been determined by X-ray diffraction methods. The structure of this phase is orthorhombic, space group Pbca and the unit-cell dimensions are a =  5.0741 (10), b  =  9.7594 (10) and c  =  13.305 (2) Å. Only one of the two H atoms of the amino group actively participates in the formation of the hydrogen-bonded chains, C(2) in graph-set notation, which lie parallel to the crystallographic a axis. Additionally, the topology of the crystal packing is studied using both Voronoi–Dirichlet polyhedra and Hirshfeld surface analyses for the low-temperature and the high-pressure structures of cyclopropylamine and the results are compared.


Author(s):  
Sakuntala Gupta ◽  
Partha Pratim Das ◽  
Przemysław Kula ◽  
Emmanuele Parisi ◽  
Roberto Centore

The crystal structures of difluorine derivatives of p-terphenyls (nTm) have been determined by single-crystal X-ray diffraction. For the unsymmetrical substituted compounds 2′,3′-difluoro-4-methyl-p-terphenyl (1T0, C19H14F2) and 4-ethyl-2′,3′-difluoro-4′′-methyl-p-terphenyl (1T2, C21H18F2), the crystal structure is disordered, with molecules statistically entering the crystal in up and down orientations, with full superposition of all the atoms, except for those of the terminal groups (H/methyl for 1T0 and methyl/ethyl for 1T2). For triclinic 2′,3′-difluoro-4,4′′-dimethyl-p-terphenyl (1T1, C20H16F2), with the space group P\overline{1}, the two crystallographically independent molecules have the same conformation, which is different from monoclinic 1T0 (space group C2) and 1T2 (space group C2/c). A common feature of the conformation of the three compounds is the noncoplanar twisted arrangement of the three rings of the p-terphenyl moiety. Two-dimensional (2D) Hirshfeld fingerprint plots are consistent with H...H and C...H contacts in the crystal packing. For the three compounds, the phase behaviour has been investigated by POM (Petra/Osiris/Molinspiration) and differential scanning calorimetry (DSC) analysis. 1T2 is mesogenic, with enantiotropic nematic behaviour.


1988 ◽  
Vol 66 (9) ◽  
pp. 2367-2374 ◽  
Author(s):  
Ramesh Kapoor ◽  
Poonam Wadhawan ◽  
Pratibha Kapoor ◽  
Jeffery F. Sawyer

The compounds seleninyl bis(trifluoromethanesulphonate) (1) and seleninyl bis(acetate) (2) have been prepared and characterized by elemental analysis, ir and Raman spectroscopy, and X-ray crystallography. Crystals of 1 are monoclinic, space group P21/n with a = 12.735(1) Å, b = 5.163(4) Å, c = 16.133(2) Å, β = 96.426(8)°, U = 1054 Å3, Dx = 2.48 g cm−3 for Z = 4, R = 0.038 for 1745 observed reflections with I > 2.5σ(I). Those of 2 are orthorhombic, space group Pcab with a = 6,845(3) Å, b = 8.992(2) Å, c = 23.560(9) Å, U = 1450 Å3Dx = 1.95 g cm−3 for Z = 8, R = 0.074 for 1073 observed reflections with I > 3.0σ(I). The primary geometry of the Se atom in SeO(O3SCF3)2 is AX3E with a Se=O distance of 1.571(3) Å and Se—O bond lengths to the CF3SO3 ligands of 1.902(3) and 1.922(3) Å. Completing the overall coordination geometry of the Se atom are 2 intramolecular and 4 intermolecular Se … O contacts which are less than van der Waals limits. The overall coordination geometry is somewhat irregular since the two triflate anions are significantly differently arranged with respect to the SeO3E tetrahedron. The crystal packing consists of layers of interacting molecules. In 2 there is some disorder. However, the major arrangement of the molecule has Se=O and Se—O(1), Se—O(3) distances to the acetate ligands of lengths 1.575(9), 1.847(7), and 1.831(8) Å respectively. The overall geometry of the Se atom in this compound is completed by two intramolecular secondary Se … O contacts involving the second O atoms of both acetates and two intermolecular contacts involving the seleninyl oxygen atom and atom O(2) of an acetate group in two different symmetry related molecules. Overall, the crystal packing consists of essentially centrosymmetric dimeric units linked together through Se=O—Se bridges. A 1:2 adduct of 1 with pyridine has also been prepared and characterised.


1997 ◽  
Vol 52 (3) ◽  
pp. 340-344 ◽  
Author(s):  
Olaf Reckeweg ◽  
H.-Jürgen Meyer

Abstract The new compounds Ca2ClBN2 (1) and Sr2ClBN2 (2) were prepared from the respective metal, its dihalide and h-BN in sealed tantalum ampoules at 1200 °C. The crystals obtained were transparent yellow (1) and blue (2), respectively. The crystal structures were determined from single crystal X-ray data. Ca2ClBN2 and Sr2ClBN2 are isotypic and crystallize in the orthorhombic space group Pnma (No. 62), Z = 4 (Ca2ClBN 2: a = 1166.7(2), b = 390.26(4), c = 899.8(1) pm, R1 = 0.043, wR2 = 0.115 for 554 independent reflections; Sr2ClBN2: a = 1242.8(1), b = 416.75(4), c = 920.8(1) pm, R1 = 0.031, wR2 = 0.054 for 662 independent reflections).The structures contain two different layers of M2+, Cl- and BN23- alternating along the [010] direction. The bond angles N-B-N are 177.2(4)° for (1) and 176,6(5)° for (2), the bond distances of the BN23- ions are dB_ N1] = 134.6(5) pm for (1), 136,3(7) pm for (2) and dB_N2 = 132.4(5) pm for (1) and 131,3(7) pm for (2). The unsymmetric structure of the BN23- ion, as is manifested particularly in the Sr compound (2), is caused by the coordination of N1 to four cations while N2 is coordinated only to three.


Sign in / Sign up

Export Citation Format

Share Document