scholarly journals SINR- and MI-Based Maximin Robust Waveform Design

Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 33 ◽  
Author(s):  
Bin Wang ◽  
Xu Chen ◽  
Fengming Xin ◽  
Xin Song

Due to the uncertainties of radar target prior information in the actual scene, the waveform designed based on radar target prior information cannot meet the needs of detection and parameter estimation performance. In this paper, the optimal waveform design techniques under energy constraints for different tasks are considered. To improve the detection performance of radar systems, a novel waveform design method which can maximize the signal-to-interference-plus-noise ratio (SINR) for known and random extended targets is proposed. To improve the performance of parameter estimation, another waveform design method which can maximize the mutual information (MI) between the radar echo and the random-target spectrum response is also considered. Most of the previous waveform design researches assumed that the prior information of the target spectrum is completely known. However, in the actual scene, the real target spectrum cannot be accurately captured. To simulate this scenario, the real target spectrum was assumed to be within an uncertainty range where the upper and lower bounds are known. Then, the SINR- and MI-based maximin robust waveforms were designed, which could optimize the performance under the most unfavorable conditions. The simulation results show that the designed optimal waveforms based on these two criteria are different, which provides useful guidance for waveform energy allocation in different transmission tasks. However, under the constraint of limited energy, we also found that the performance improvement of SINR or MI in the worst case for single targets is less significant than that of multiple targets.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Bin Wang ◽  
Xu Chen ◽  
Fengming Xin ◽  
Xin Song

Due to the uncertainties of the radar target prior information in the actual scene, the waveform designed based on the radar target prior information cannot meet the needs of parameter estimation. To improve the performance of parameter estimation, a novel transmitted waveform design method under the hierarchical game model of radar and jammer, which maximizes the mutual information (MI) between the radar target echo and the random target spectrum response, is proposed. In the hierarchical game model of radar and jammer, the radar is in a leading position while the jammer is in a following position. The strategy of the jammer is optimized based on the radar transmitted waveform of previous moment, then the radar selects its own strategy based on the strategy of the jammer. It is generally assumed that the radar and the jammer have intercepted the real target spectrum and then the optimal jamming and the optimal transmitted waveform spectrum are obtained. However, the exact characteristic of the real target spectrum is hard to capture accurately in actual scenes. To simulate this, the real target spectrum is considered to be within an uncertainty range which is confined by known upper and lower bounds. Then, the minimax robust jamming and the maximin robust transmitted waveform are designed successively based on the MI criteria, which optimizes the performance under the most unfavorable condition of the radar and the jammer, respectively. Simulation results demonstrate that the robust transmitted waveform design method guarantees the parameter estimation performance effectively and provides useful guidance for waveform energy allocation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Bin Wang ◽  
Shuangqi Yu

Cognitive radar is an intelligent radar system, and adaptive waveform design is one of the core problems in cognitive radar research. In the previous studies, it is assumed that the prior information of the target is known, and the definition of target spectrum variance has not changed. In this paper, we study on robust waveform design problem in multiple targets scene. We hope that the upper and lower bounds of the uncertainty range of robustness are more close to the actual situation, and establish a finite time random target signal model based on mutual information (MI). On the basis of the optimal transmitted waveform and robust waveform based on MI, we redefine the target spectrum variance as harmonic variance, and propose a novel robust waveform design method based on harmonic variance and MI. We compare its performance with robust waveform based on original variance. Simulation results show that, in the situation of multiple targets, compared to the original variance, the MI lifting rate of robust waveform based on harmonic variance relative to the optimal transmitted waveform in the uncertainty range has great improvement. In certain circumstances, robust waveform based on harmonic variance and MI is more suitable for more targets.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 31
Author(s):  
Bin Wang ◽  
Shumin Li ◽  
Xishi Wang ◽  
Xin Li

Due to the uncertainty of radar target prior information in actual scenes, waveform design based on radar target prior information cannot meet the requirements of detection performance and parameter estimation. Aiming at the problem of waveform design for detecting multi-target in the presence of clutter, a linear probability-weighted summation (PWS) algorithm based on multi-target impulse response is proposed and includes the radar waveform design based on mutual information (MI) and signal-to-interference ratio (SINR) criteria. In view of the traditional water-filling algorithm, the problem of multi-target is further investigated in a new way to improve the overall performance of the system. The method makes a lot of deductions by using Jensen’s inequality, to determine the algorithm objective function and energy constraint. The simulation results show that the proposed algorithm has better detection performance and more accurate target information.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 508
Author(s):  
Jing Gao ◽  
Rihan Wu ◽  
Jinde Zhang

With increasing complexity of electronic warfare environments, smart jammers are beginning to play an important role. This study investigates a method of power minimization-based jamming waveform design in the presence of multiple targets, in which the performance of a radar system can be degraded according to the jammers’ different tasks. By establishing an optimization model, the power consumption of the designed jamming spectrum is minimized. The jamming spectrum with power control is constrained by a specified signal-to-interference-plus-noise ratio (SINR) or mutual information (MI) requirement. Considering that precise characterizations of the radar-transmitted spectrum are rare in practice, a single-robust jamming waveform design method is proposed. Furthermore, recognizing that the ground jammer is not integrated with the target, a double-robust jamming waveform design method is studied. Simulation results show that power minimization-based single-robust jamming spectra can maximize the power-saving performance of smart jammers in the local worst-case scenario. Moreover, double-robust jamming spectra can minimize the power consumption in the global worst-case scenario and provide useful guidance for the waveform design of ground jammers.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Wei Zhou ◽  
Zilong Tan ◽  
Shaowen Yao ◽  
Shipu Wang

Resource location in structured P2P system has a critical influence on the system performance. Existing analytical studies of Chord protocol have shown some potential improvements in performance. In this paper a splay tree-based new Chord structure called SChord is proposed to improve the efficiency of locating resources. We consider a novel implementation of the Chord finger table (routing table) based on the splay tree. This approach extends the Chord finger table with additional routing entries. Adaptive routing algorithm is proposed for implementation, and it can be shown that hop count is significantly minimized without introducing any other protocol overheads. We analyze the hop count of the adaptive routing algorithm, as compared to Chord variants, and demonstrate sharp upper and lower bounds for both worst-case and average case settings. In addition, we theoretically analyze the hop reducing in SChord and derive the fact that SChord can significantly reduce the routing hops as compared to Chord. Several simulations are presented to evaluate the performance of the algorithm and support our analytical findings. The simulation results show the efficiency of SChord.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


2021 ◽  
Vol 412 ◽  
pp. 11-26
Author(s):  
Marla Rodrigues Oliveira ◽  
Elizaldo Domingues Santos ◽  
Liércio André Isoldi ◽  
Luiz Alberto Oliveira Rocha ◽  
Mateus das Neves Gomes

This study is about a two-dimensional numerical analysis of the influence of a ramp in front on an oscillating water column wave energy converter (OWC-WEC). The main purpose was to evaluate, numerically and geometrically, the effect of using a ramp variation in relation to the frontal wall on the hydropneumatic power of the OWC-WEC. The constructal design method was applied for geometric analysis. The problem had a geometric constraint: the area of the ramp (A2) and two degrees of freedom: H2 / L2 (ratio of the height and length of the ramp) and L4 (the distance of the ramp concerning the OWC-WEC front wall). In numerical simulations, the equations of conservation of mass, momentum, and an equation for the transport of volumetric fraction were solved using the finite volume method (FVM). The multiphase model volume of fluid (VOF) was applied for the air-water interaction. Thus, the increase in the H2/L2 ratio resulted in a decrease of the root mean square (RMS) of the available hydropneumatic power (Phyd). By varying the distance L4, the better case was = 6 m and / = 0.025 and the worst case was = 1 m and / = 0.2. The relative difference between the better RMS Phyd = 150.7957 W and the worst Phyd = 73.1164 W reached up to a hundred and six percent.


Sign in / Sign up

Export Citation Format

Share Document