scholarly journals An Information-Theoretic Analysis of Flexible Efficient Cognition for Persistent Sustainable Production

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 444
Author(s):  
Stephen Fox ◽  
Adrian Kotelba

Amidst certainty, efficiency can improve sustainability by reducing resource consumption. However, flexibility is needed to be able to survive when uncertainty increases. Apropos, sustainable production cannot persist in the long-term without having both flexibility and efficiency. Referring to cognitive science to inform the development of production systems is well established. However, recent research in cognitive science encompassing flexibility and efficiency in brain functioning have not been considered previously. In particular, research by others that encompasses information (I), information entropy (H), relative entropy (D), transfer entropy (TE), and brain entropy. By contrast, in this paper, flexibility and efficiency for persistent sustainable production is analyzed in relation to these information theory applications in cognitive science and is quantified in terms of information. Thus, this paper is consistent with the established practice of referring to cognitive science to inform the development of production systems. However, it is novel in addressing the need to combine flexibility and efficiency for persistent sustainability in terms of cognitive functioning as modelled with information theory.

In previous chapters, the authors provided a comprehensive framework that can be used in the formal probabilistic and information-theoretic analysis of a wide range of systems and protocols. In this chapter, they illustrate the usefulness of conducting this analysis using theorem proving by tackling a number of applications including a data compression application, the formal analysis of an anonymity-based MIX channel, and the properties of the onetime pad encryption system.


2007 ◽  
Vol 15 (2) ◽  
pp. 169-198 ◽  
Author(s):  
Dong-Il Seo ◽  
Byung-Ro Moon

In optimization problems, the contribution of a variable to fitness often depends on the states of other variables. This phenomenon is referred to as epistasis or linkage. In this paper, we show that a new theory of epistasis can be established on the basis of Shannon's information theory. From this, we derive a new epistasis measure called entropic epistasis and some theoretical results. We also provide experimental results verifying the measure and showing how it can be used for designing efficient evolutionary algorithms.


2021 ◽  
Author(s):  
Subhash Kak

This paper investigates evolution of a physical system through intermediate noninteger dimensions to provide a phenomenological explanation for the system’s emergent properties. In recent papers it was shown that physical space is associated with noninteger dimensionality and its value is associated with the strength of attractive inverse square law and this has applications to diverse fields including the design of metamaterials. Here this information-theoretic analysis is applied to cosmology to yields a novel noninteger dimensional explanation for filaments and sheets of matter, inflation, and the accelerating expansion of the universe, without the need to postulate inflation field or dark energy as the drivers of this expansion. Furthermore, the analysis shown that in the future as the zero-dimension residual potential declines further, the expansion will slow and then reverse. Evolution across noninteger spaces has potential relevance for the study of materials that emerge from compressing three-dimensional volumes into lower dimensions.


2021 ◽  
Author(s):  
Subhash Kak

This paper investigates evolution of a physical system through intermediate noninteger dimensions to provide a phenomenological explanation for the system’s emergent properties. In recent papers it was shown that physical space is associated with noninteger dimensionality and its value is associated with the strength of attractive inverse square law and this has applications to diverse fields including the design of metamaterials. Here this information-theoretic analysis is applied to cosmology to yields a novel noninteger dimensional explanation for filaments and sheets of matter, inflation, and the accelerating expansion of the universe, without the need to postulate inflation field or dark energy as the drivers of this expansion. Furthermore, the analysis shown that in the future as the zero-dimension residual potential declines further, the expansion will slow and then reverse. Evolution across noninteger spaces has potential relevance for the study of materials that emerge from compressing three-dimensional volumes into lower dimensions.


Author(s):  
Mohammad B. Azzam ◽  
Ronald A. Easteal

AbstractClearly, memory and learning are essential to medical education. To make memory and learning more robust and long-term, educators should turn to the advances in neuroscience and cognitive science to direct their efforts. This paper describes the memory pathways and stages with emphasis leading to long-term memory storage. Particular stress is placed on this storage as a construct known as schema. Leading from this background, several pedagogical strategies are described: cognitive load, dual encoding, spiral syllabus, bridging and chunking, sleep consolidation, and retrieval practice.


2021 ◽  
pp. 1-1
Author(s):  
Alexandros E. Tzikas ◽  
Panagiotis D. Diamantoulakis ◽  
George K. Karagiannidis

Sign in / Sign up

Export Citation Format

Share Document