scholarly journals Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 510 ◽  
Author(s):  
Longlong Liu ◽  
Di Ma ◽  
Ahmad Taher Azar ◽  
Quanmin Zhu

In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the total non-linear model are mapped to the connection weights of the neural network. Then, based on the minimization of network error, a weight-updating algorithm, that is, an estimation algorithm of model parameters, is proposed with the convergence conditions of a non-completely connected feedforward network. In further determining the variables of the model set, a method of model structure detection is proposed for selecting a group of important items from the whole variable candidate set. In order to verify the usefulness of the parameter identification process, we provide a virtual bench test example for the numerical analysis and user-friendly instructions for potential applications.

Author(s):  
Ronald K. Pearson

It was emphasized in Chapter 1 that low-order, linear time-invariant models provide the foundation for much intuition about dynamic phenomena in the real world. This chapter provides a brief review of the characteristics and behavior of linear models, beginning with these simple cases and then progressing to more complex examples where this intuition no longer holds: infinite-dimensional and time-varying linear models. In continuous time, infinite-dimensional linear models arise naturally from linear partial differential equations whereas in discrete time, infinite-dimensional linear models may be used to represent a variety of “slow decay” effects. Time-varying linear models are also extremely flexible: In the continuous-time case, many of the ordinary differential equations defining special functions (e.g., the equations defining Bessel functions) may be viewed as time-varying linear models; in the discrete case, the gamma function arises naturally as the solution of a time-varying difference equation. Sec. 2.1 gives a brief discussion of low-order, time-invariant linear dynamic models, using second-order examples to illustrate both the “typical” and “less typical” behavior that is possible for these models. One of the most powerful results of linear system theory is that any time-invariant linear dynamic system may be represented as either a moving average (i.e., convolution-type) model or an autoregressive one. Sec. 2.2 presents a short review of these ideas, which will serve to establish both notation and a certain amount of useful intuition for the discussion of NARMAX models presented in Chapter 4. Sec. 2.3 then briefly considers the problem of characterizing linear models, introducing four standard input sequences that are typical of those used in linear model characterization. These standard sequences are then used in subsequent chapters to illustrate differences between nonlinear model behavior and linear model behavior. Sec. 2.4 provides a brief introduction to infinite-dimensional linear systems, including both continuous-time and discrete-time examples. Sec. 2.5 provides a similar introduction to the subject of time-varying linear systems, emphasizing the flexibility of this class. Finally, Sec. 2.6 briefly considers the nature of linearity, presenting some results that may be used to define useful classes of nonlinear models.


2011 ◽  
Vol 5 (1) ◽  
pp. 137 ◽  
Author(s):  
Carlos Pozo ◽  
Alberto Marín-Sanguino ◽  
Rui Alves ◽  
Gonzalo Guillén-Gosálbez ◽  
Laureano Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document