scholarly journals Optimization of Probabilistic Shaping for Nonlinear Fiber Channels with Non-Gaussian Noise

Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 872
Author(s):  
Henrik Enggaard Hansen ◽  
Metodi P. Yankov ◽  
Leif Katsuo Oxenløwe ◽  
Søren Forchhammer

Probabilistic constellation shaping is investigated in the context of nonlinear fiber optic communication channels. Based on a general framework, different link types are considered—1. dispersion-managed channels, 2. unrepeatered transmission channels and 3. ideal distributed Raman amplified channels. These channels exhibit nonlinear effects to a degree that conventional probabilistic constellation shaping strategies for the additive white Gaussian (AWGN) noise channel are suboptimal. A channel-agnostic optimization strategy is used to optimize the constellation probability mass functions (PMFs) for the channels in use. Optimized PMFs are obtained, which balance the effects of additive amplified spontaneous emission noise and nonlinear interference. The obtained PMFs cannot be modeled by the conventional Maxwell-Boltzmann PMFs and outperform optimal choices of these in all the investigated channels. Suboptimal choices of constellation shapes are associated with increased nonlinear effects in the form of non-Gaussian noise. For dispersion-managed channels, a reach gain in 2 spans is seen and across the three channel types, gains of >0.1 bits/symbol over unshaped quadrature-amplitude modulation (QAM) are seen using channel-optimized probablistic shaping.

2015 ◽  
Vol 27 (12) ◽  
pp. 1250-1253 ◽  
Author(s):  
Li Yan ◽  
Erik Agrell ◽  
Henk Wymeersch ◽  
Pontus Johannisson ◽  
Rocco Di Taranto ◽  
...  

2012 ◽  
Vol 71 (17) ◽  
pp. 1541-1555
Author(s):  
V. A. Baranov ◽  
S. V. Baranov ◽  
A. V. Nozdrachev ◽  
A. A. Rogov

2013 ◽  
Vol 72 (11) ◽  
pp. 1029-1038
Author(s):  
M. Yu. Konyshev ◽  
S. V. Shinakov ◽  
A. V. Pankratov ◽  
S. V. Baranov

Author(s):  
I. Juwiler ◽  
I. Bronfman ◽  
N. Blaunstein

Introduction: This article is based on the recent research work in the field of two subjects: signal data parameters in fiber optic communication links, and dispersive properties of optical signals caused by non-homogeneous material phenomena and multimode propagation of optical signals in such kinds of wired links.Purpose: Studying multimode dispersion by analyzing the propagation of guiding optical waves along a fiber optic cable with various refractive index profiles of the inner optical cable (core) relative to the outer cladding, as well as dispersion properties of a fiber optic cable due to inhomogeneous nature of the cladding along the cable, for two types of signal code sequences transmitted via the cable: return-to-zero and non-return-to-zero ones.Methods: Dispersion properties of multimode propagation inside a fiber optic cable are analyzed with an advanced 3D model of optical wave propagation in a given guiding structure. The effects of multimodal dispersion and material dispersion causing the optical signal delay spread along the cable were investigated analytically and numerically.Results: Time dispersion properties were obtained and graphically illustrated for two kinds of fiber optic structures with different refractive index profiles. The dispersion was caused by multimode (e.g. multi-ray) propagation and by the inhomogeneous nature of the material along the cable. Their effect on the capacity and spectral efficiency of a data signal stream passing through such a guiding optical structure is illustrated for arbitrary refractive indices of the inner (core) and outer (cladding) elements of the optical cable. A new methodology is introduced for finding and evaluating the effects of time dispersion of optical signals propagating in fiber optic structures of various kinds. An algorithm is proposed for estimating the spectral efficiency loss measured in bits per second per Hertz per each kilometer along the cable, for arbitrary presentation of the code signals in the data stream, non-return-to zero or return-to-zero ones. All practical tests are illustrated by MATLAB utility.


Sign in / Sign up

Export Citation Format

Share Document