scholarly journals Monitoring the Zero-Inflated Time Series Model of Counts with Random Coefficient

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 372
Author(s):  
Cong Li ◽  
Shuai Cui ◽  
Dehui Wang

In this research, we consider monitoring mean and correlation changes from zero-inflated autocorrelated count data based on the integer-valued time series model with random survival rate. A cumulative sum control chart is constructed due to its efficiency, the corresponding calculation methods of average run length and the standard deviation of the run length are given. Practical guidelines concerning the chart design are investigated. Extensive computations based on designs of experiments are conducted to illustrate the validity of the proposed method. Comparisons with the conventional control charting procedure are also provided. The analysis of the monthly number of drug crimes in the city of Pittsburgh is displayed to illustrate our current method of process monitoring.

2011 ◽  
Vol 3 (9) ◽  
pp. 562-566
Author(s):  
Ramin Rzayev ◽  
◽  
Musa Agamaliyev ◽  
Nijat Askerov

2019 ◽  
Vol 139 (3) ◽  
pp. 212-224
Author(s):  
Xiaowei Dui ◽  
Masakazu Ito ◽  
Yu Fujimoto ◽  
Yasuhiro Hayashi ◽  
Guiping Zhu ◽  
...  

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 154
Author(s):  
Anderson Fonseca ◽  
Paulo Henrique Ferreira ◽  
Diego Carvalho do Nascimento ◽  
Rosemeire Fiaccone ◽  
Christopher Ulloa-Correa ◽  
...  

Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards truncated processes as open questions in this field. This work was motivated by the register of elements related to the water particles monitoring (relative humidity), an important source of moisture for the Copiapó watershed, and the Atacama region of Chile (the Atacama Desert), and presenting high asymmetry for rates and proportions data. This paper proposes a new control chart for interval data about rates and proportions (symbolic interval data) when they are not results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such as having only one parameter, from which we develop the unit-Lindley chart for both classical and symbolic data. The performance of the proposed control chart is analyzed using the average run length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics calculated through an extensive Monte Carlo simulation study. Results from the real data applications reveal the tool’s potential to be adopted to estimate the control limits in a Statistical Process Control (SPC) framework.


Sign in / Sign up

Export Citation Format

Share Document