scholarly journals Extreme Value Theory for Hurwitz Complex Continued Fractions

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 840
Author(s):  
Maxim Sølund Kirsebom

The Hurwitz complex continued fraction is a generalization of the nearest integer continued fraction. In this paper, we prove various results concerning extremes of the modulus of Hurwitz complex continued fraction digits. This includes a Poisson law and an extreme value law. The results are based on cusp estimates of the invariant measure about which information is still limited. In the process, we obtained several results concerning the extremes of nearest integer continued fractions as well.

2019 ◽  
Vol 41 (2) ◽  
pp. 461-470
Author(s):  
ANISH GHOSH ◽  
MAXIM SØLUND KIRSEBOM ◽  
PARTHANIL ROY

In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from $(0,1)$ according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.


2012 ◽  
Vol 33 (4) ◽  
pp. 1008-1028 ◽  
Author(s):  
JOHANNES JAERISCH ◽  
MARC KESSEBÖHMER ◽  
BERND O. STRATMANN

AbstractIn this paper we establish a Fréchet law for maximal cuspidal windings of the geodesic flow on a Riemannian surface associated with an arbitrary finitely generated, essentially free Fuchsian group with parabolic elements. This result extends previous work by Galambos and Dolgopyat and is obtained by applying extreme value theory. Subsequently, we show that this law gives rise to an Erdős–Philipp law and to various generalized Khintchine-type results for maximal cuspidal windings. These results strengthen previous results by Sullivan, Stratmann and Velani for Kleinian groups, and extend earlier work by Philipp on continued fractions, which was inspired by a conjecture of Erdős.


Sign in / Sign up

Export Citation Format

Share Document