stein method
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Janko Gravner ◽  
Xiaochen Liu

We study cellular automata whose rules are selected uniformly at random. Our setting are two-neighbor one-dimensional rules with a large number $n$ of states. The main quantity we analyze is the asymptotic distribution, as $n \to \infty$, of the number of different periodic solutions with given spatial and temporal periods. The main tool we use is the Chen-Stein method for Poisson approximation, which establishes that the number of periodic solutions, with their spatial and temporal periods confined to a finite range, converges to a Poisson random variable with an explicitly given parameter. The limiting probability distribution of the smallest temporal period for a given spatial period is deduced as a corollary and relevant empirical simulations are presented.


Author(s):  
Ehsan Azmoodeh ◽  
Giovanni Peccati ◽  
Xiaochuan Yang

Author(s):  
Laura Eslava

Abstract We introduce a non-increasing tree growth process $((T_n,{\sigma}_n),\, n\ge 1)$ , where T n is a rooted labelled tree on n vertices and σ n is a permutation of the vertex labels. The construction of (T n , σ n ) from (Tn−1, σn−1) involves rewiring a random (possibly empty) subset of edges in Tn−1 towards the newly added vertex; as a consequence Tn−1 ⊄ T n with positive probability. The key feature of the process is that the shape of T n has the same law as that of a random recursive tree, while the degree distribution of any given vertex is not monotone in the process. We present two applications. First, while couplings between Kingman’s coalescent and random recursive trees were known for any fixed n, this new process provides a non-standard coupling of all finite Kingman’s coalescents. Second, we use the new process and the Chen–Stein method to extend the well-understood properties of degree distribution of random recursive trees to extremal-range cases. Namely, we obtain convergence rates on the number of vertices with degree at least $c\ln n$ , c ∈ (1, 2), in trees with n vertices. Further avenues of research are discussed.


2020 ◽  
Vol 57 (3) ◽  
pp. 911-927
Author(s):  
Merritt R. Lyon ◽  
Hosam M. Mahmoud

AbstractWe introduce a class of non-uniform random recursive trees grown with an attachment preference for young age. Via the Chen–Stein method of Poisson approximation, we find that the outdegree of a node is characterized in the limit by ‘perturbed’ Poisson laws, and the perturbation diminishes as the node index increases. As the perturbation is attenuated, a pure Poisson limit ultimately emerges in later phases. Moreover, we derive asymptotics for the proportion of leaves and show that the limiting fraction is less than one half. Finally, we study the insertion depth in a random tree in this class. For the insertion depth, we find the exact probability distribution, involving Stirling numbers, and consequently we find the exact and asymptotic mean and variance. Under appropriate normalization, we derive a concentration law and a limiting normal distribution. Some of these results contrast with their counterparts in the uniform attachment model, and some are similar.


2019 ◽  
Vol 29 (6) ◽  
pp. 373-381
Author(s):  
Oleg P. Orlov

Abstract For sets of iid random points having a uniform (in a definite sense) distribution on the arbitrary metric space a maximal distance to the nearest neighbour is considered. By means of the Chen–Stein method new limit theorems for this random variable is proved. For random uniform samples from the set of binary cube vertices analogous results are obtained by the methods of moments.


2019 ◽  
Vol 41 (2) ◽  
pp. 461-470
Author(s):  
ANISH GHOSH ◽  
MAXIM SØLUND KIRSEBOM ◽  
PARTHANIL ROY

In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from $(0,1)$ according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.


2017 ◽  
Vol 45 (2) ◽  
pp. 1071-1109 ◽  
Author(s):  
Kai Krokowski ◽  
Anselm Reichenbachs ◽  
Christoph Thäle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document