scholarly journals Proposal to Test a Transient Deviation from Quantum Mechanics’ Predictions for Bell’s Experiment

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1589
Author(s):  
Alejandro Andrés Hnilo ◽  
Monica Beatriz Agüero ◽  
Marcelo Gregorio Kovalsky

Quantum mechanics predicts correlations between measurements performed in distant regions of a spatially spread entangled state to be higher than allowed by intuitive concepts of Locality and Realism. These high correlations forbid the use of nonlinear operators of evolution (which would be desirable for several reasons), for they may allow faster-than-light signaling. As a way out of this situation, it has been hypothesized that the high quantum correlations develop only after a time longer than L/c has elapsed (where L is the spread of the entangled state and c is the velocity of light). In shorter times, correlations compatible with Locality and Realism would be observed instead. A simple hidden variables model following this hypothesis is described. It is based on a modified Wheeler–Feynman theory of radiation. This hypothesis has not been disproved by any of the experiments performed to date. A test achievable with accessible means is proposed and described. It involves a pulsed source of entangled states and stroboscopic record of particle detection during the pulses. Data recorded in similar but incomplete optical experiments are analyzed, and found consistent with the proposed model. However, it is not claimed, in any sense, that the hypothesis has been validated. On the contrary, it is stressed that a complete, specific test is absolutely needed.

1978 ◽  
Vol 43 (1) ◽  
pp. 65-72 ◽  
Author(s):  
A. Baracca ◽  
A. Cornia ◽  
R. Livi ◽  
S. Ruffo

2021 ◽  
Author(s):  
Samuel Yuguru

Abstract Physics in general is successfully governed by quantum mechanics at the microscale and principles of relativity at the macroscale. Any attempts to unify them using conventional methods have somewhat remained elusive for nearly a century up to the present stage. Here in this study, a classical gedanken experiment of electron-wave diffraction of a single slit is intuitively examined for its quantized states. A unidirectional monopole field as quanta of the electric field is pictorially conceptualized into 4D space-time. Its application towards quantum mechanics and general relativity in accordance with existing knowledge in physics paves an alternative path towards their reconciliation process. This assumes a multiverse at a hierarchy of scales with gravity localized to a body into space. Principles of special relativity are then sustained along inertia frames of extra dimensions within the proposed model. Such descriptions provide an approximate intuitive tool to examine physics in general from alternative perspectives using conventional methods and this warrants further investigations.


Quanta ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 40 ◽  
Author(s):  
Emily Christine Adlam

It is proposed that certain features of quantum mechanics may be perspectival effects, which arise because experiments performed on locally accessible variables can only uncover a certain subset of the correlations exhibited by an underlying deterministic theory. This hypothesis is used to derive the no-signaling principle, thus resolving an open question regarding the apparently fine-tuned nature of quantum correlations. Some potential objections to this approach are then discussed and answered.Quanta 2018; 7: 40–53.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations.


Sign in / Sign up

Export Citation Format

Share Document