scholarly journals A Probabilistic Re-Intepretation of Confidence Scores in Multi-Exit Models

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 1
Author(s):  
Jary Pomponi ◽  
Simone Scardapane ◽  
Aurelio Uncini

In this paper, we propose a new approach to train a deep neural network with multiple intermediate auxiliary classifiers, branching from it. These ‘multi-exits’ models can be used to reduce the inference time by performing early exit on the intermediate branches, if the confidence of the prediction is higher than a threshold. They rely on the assumption that not all the samples require the same amount of processing to yield a good prediction. In this paper, we propose a way to train jointly all the branches of a multi-exit model without hyper-parameters, by weighting the predictions from each branch with a trained confidence score. Each confidence score is an approximation of the real one produced by the branch, and it is calculated and regularized while training the rest of the model. We evaluate our proposal on a set of image classification benchmarks, using different neural models and early-exit stopping criteria.

2018 ◽  
Vol 189 ◽  
pp. 04016
Author(s):  
Viet-Hung Nguyen ◽  
Minh-Tuan Nguyen ◽  
Yong-Hwa Kim

Orthogonal frequency division multiplexing (OFDM) is widely used in wired or wireless transmission systems. In the structure of OFDM, a cycle prefix (CP) has been exploited to avoid the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI). This paper proposes a new approach to transmit the signals without CP transmission. Using the deep neural network, the proposed OFDM system transmits data without the CP. Simulation results show that the proposed scheme can estimate the CP at the receiver and overcome the effect of ISI.


Author(s):  
Nayere Zaghari ◽  
Mahmood Fathy ◽  
Seyed Mahdi Jameii ◽  
Mohammad Sabokrou ◽  
Mohammad Shahverdy

Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To drive vehicles autonomously, controlling steer angle, gas hatch, and brakes need to be learned. The behavioral cloning method is used to imitate humans’ driving behavior. We created a dataset of driving in different routes and conditions and using the designed model, the output used for controlling the vehicle is obtained. In this paper, the Learning of Self-driving Vehicles Based on Real Driving Behavior Using Deep Neural Network Techniques (LSV-DNN) is proposed. We designed a convolutional network which uses the real driving data obtained through the vehicle’s camera and computer. The response of the driver is during driving is recorded in different situations and by converting the real driver’s driving video to images and transferring the data to an excel file, obstacle detection is carried out with the best accuracy and speed using the Yolo algorithm version 3. This way, the network learns the response of the driver to obstacles in different locations and the network is trained with the Yolo algorithm version 3 and the output of obstacle detection. Then, it outputs the steer angle and amount of brake, gas, and vehicle acceleration. The LSV-DNN is evaluated here via extensive simulations carried out in Python and TensorFlow environment. We evaluated the network error using the loss function. By comparing other methods which were conducted on the simulator’s data, we obtained good performance results for the designed network on the data from KITTI benchmark, the data collected using a private vehicle, and the data we collected.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2017 ◽  
Vol 235 ◽  
pp. 38-45 ◽  
Author(s):  
Qinghua Yu ◽  
Jinjun Wang ◽  
Shizhou Zhang ◽  
Yihong Gong ◽  
Jizhong Zhao

Author(s):  
Zheng Chen ◽  
Meng Pang ◽  
Zixin Zhao ◽  
Shuainan Li ◽  
Rui Miao ◽  
...  

Abstract Motivation Deep neural network (DNN) algorithms were utilized in predicting various biomedical phenotypes recently, and demonstrated very good prediction performances without selecting features. This study proposed a hypothesis that the DNN models may be further improved by feature selection algorithms. Results A comprehensive comparative study was carried out by evaluating 11 feature selection algorithms on three conventional DNN algorithms, i.e. convolution neural network (CNN), deep belief network (DBN) and recurrent neural network (RNN), and three recent DNNs, i.e. MobilenetV2, ShufflenetV2 and Squeezenet. Five binary classification methylomic datasets were chosen to calculate the prediction performances of CNN/DBN/RNN models using feature selected by the 11 feature selection algorithms. Seventeen binary classification transcriptome and two multi-class transcriptome datasets were also utilized to evaluate how the hypothesis may generalize to different data types. The experimental data supported our hypothesis that feature selection algorithms may improve DNN models, and the DBN models using features selected by SVM-RFE usually achieved the best prediction accuracies on the five methylomic datasets. Availability and implementation All the algorithms were implemented and tested under the programming environment Python version 3.6.6. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document