scholarly journals AMC2N: Automatic Modulation Classification Using Feature Clustering-Based Two-Lane Capsule Networks

Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Dhamyaa H. Al-Nuaimi ◽  
Muhammad F. Akbar ◽  
Laith B. Salman ◽  
Intan S. Zainal Abidin ◽  
Nor Ashidi Mat Isa

The automatic modulation classification (AMC) of a detected signal has gained considerable prominence in recent years owing to its numerous facilities. Numerous studies have focused on feature-based AMC. However, improving accuracy under low signal-to-noise ratio (SNR) rates is a serious issue in AMC. Moreover, research on the enhancement of AMC performance under low and high SNR rates is limited. Motivated by these issues, this study proposes AMC using a feature clustering-based two-lane capsule network (AMC2N). In the AMC2N, accuracy of the MC process is improved by designing a new two-layer capsule network (TL-CapsNet), and classification time is reduced by introducing a new feature clustering approach in the TL-CapsNet. Firstly, the AMC2N executes blind equalization, sampling, and quantization in trilevel preprocessing. Blind equalization is executed using a binary constant modulus algorithm to avoid intersymbol interference. To extract features from the preprocessed signal and classify signals accurately, the AMC2N employs the TL-CapsNet, in which individual lanes are incorporated to process the real and imaginary parts of the signal. In addition, it is robust to SNR variations, that is, low and high SNR rates. The TL-CapsNet extracts features from the real and imaginary parts of the given signal, which are then clustered based on feature similarity. For feature extraction and clustering, the dynamic routing procedure of the TL-CapsNet is adopted. Finally, classification is performed in the SoftMax layer of the TL-CapsNet. This study proves that the AMC2N outperforms existing methods, particularly, convolutional neural network(CNN), Robust-CNN (R-CNN), curriculum learning(CL), and Local Binary Pattern (LBP), in terms of accuracy, precision, recall, F-score, and computation time. All metrics are validated in two scenarios, and the proposed method shows promising results in both.

2020 ◽  
Author(s):  
Yu Wang ◽  
Guan Gui ◽  
Tomoaki Ohtsuki ◽  
Fumiyuki Adachi

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization than the conventional ones.


2011 ◽  
Vol 403-408 ◽  
pp. 2547-2551
Author(s):  
Zhan Hui Cai ◽  
Yuan Cheng Yao

Automatic modulation classification plays a significant role in intelligent communication. A new method based on feature extraction is proposed for the recognition of M-ary Phase Shift Keying (MPSK) signals. As features, fourth and eighth order cumulants of the input samples and phase differential sequences were applied. It is shown that the cumulant-based features have robust anti-noise ability. Simulation results demonstrate that the correct classification probability (Pcc) with the proposed algorithm is higher than the existing approaches at low signal-to-noise ratio (SNR).


2020 ◽  
Author(s):  
Yu Wang ◽  
Guan Gui ◽  
Tomoaki Ohtsuki ◽  
Fumiyuki Adachi

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization than the conventional ones.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chirag Roy ◽  
Satyendra Singh Yadav ◽  
Vipin Pal ◽  
Mangal Singh ◽  
Sarat Kumar Patra ◽  
...  

With rapid advancement in artificial intelligence (AI) and machine learning (ML), automatic modulation classification (AMC) using deep learning (DL) techniques has become very popular. This is even more relevant for Internet of things (IoT)-assisted wireless systems. This paper presents a lightweight, ensemble model with convolution, long short term memory (LSTM), and gated recurrent unit (GRU) layers. The proposed model is termed as deep recurrent convoluted network with additional gated layer (DRCaG). It has been tested on a dataset derived from the RadioML2016(b) and comprises of 8 different modulation types named as BPSK, QPSK, 8-PSK, 16-QAM, 4-PAM, CPFSK, GFSK, and WBFM. The performance of the proposed model has been presented through extensive simulation in terms of training loss, accuracy, and confusion matrix with variable signal to noise ratio (SNR) ranging from −20 dB to +20 dB and it demonstrates the superiority of DRCaG vis-a-vis existing ones.


Sign in / Sign up

Export Citation Format

Share Document