scholarly journals An Ensemble Deep Learning Model for Automatic Modulation Classification in 5G and Beyond IoT Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chirag Roy ◽  
Satyendra Singh Yadav ◽  
Vipin Pal ◽  
Mangal Singh ◽  
Sarat Kumar Patra ◽  
...  

With rapid advancement in artificial intelligence (AI) and machine learning (ML), automatic modulation classification (AMC) using deep learning (DL) techniques has become very popular. This is even more relevant for Internet of things (IoT)-assisted wireless systems. This paper presents a lightweight, ensemble model with convolution, long short term memory (LSTM), and gated recurrent unit (GRU) layers. The proposed model is termed as deep recurrent convoluted network with additional gated layer (DRCaG). It has been tested on a dataset derived from the RadioML2016(b) and comprises of 8 different modulation types named as BPSK, QPSK, 8-PSK, 16-QAM, 4-PAM, CPFSK, GFSK, and WBFM. The performance of the proposed model has been presented through extensive simulation in terms of training loss, accuracy, and confusion matrix with variable signal to noise ratio (SNR) ranging from −20 dB to +20 dB and it demonstrates the superiority of DRCaG vis-a-vis existing ones.

Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


Author(s):  
Hamza Abbad ◽  
Shengwu Xiong

Automatic diacritization is an Arabic natural language processing topic based on the sequence labeling task where the labels are the diacritics and the letters are the sequence elements. A letter can have from zero up to two diacritics. The dataset used was a subset of the preprocessed version of the Tashkeela corpus. We developed a deep learning model composed of a stack of four bidirectional long short-term memory hidden layers of the same size and an output layer at every level. The levels correspond to the groups that we classified the diacritics into (short vowels, double case-endings, Shadda, and Sukoon). Before training, the data were divided into input vectors containing letter indexes and outputs vectors containing the indexes of diacritics regarding their groups. Both input and output vectors are concatenated, then a sliding window operation with overlapping is performed to generate continuous and fixed-size data. Such data is used for both training and evaluation. Finally, we realize some tests using the standard metrics with all of their variations and compare our results with two recent state-of-the-art works. Our model achieved 3% diacritization error rate and 8.99% word error rate when including all letters. We have also generated the confusion matrix to show the performances per output and analyzed the mismatches of the first 500 lines to classify the model errors according to their linguistic nature.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1064
Author(s):  
I Nyoman Kusuma Wardana ◽  
Julian W. Gardner ◽  
Suhaib A. Fahmy

Accurate air quality monitoring requires processing of multi-dimensional, multi-location sensor data, which has previously been considered in centralised machine learning models. These are often unsuitable for resource-constrained edge devices. In this article, we address this challenge by: (1) designing a novel hybrid deep learning model for hourly PM2.5 pollutant prediction; (2) optimising the obtained model for edge devices; and (3) examining model performance running on the edge devices in terms of both accuracy and latency. The hybrid deep learning model in this work comprises a 1D Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) to predict hourly PM2.5 concentration. The results show that our proposed model outperforms other deep learning models, evaluated by calculating RMSE and MAE errors. The proposed model was optimised for edge devices, the Raspberry Pi 3 Model B+ (RPi3B+) and Raspberry Pi 4 Model B (RPi4B). This optimised model reduced file size to a quarter of the original, with further size reduction achieved by implementing different post-training quantisation. In total, 8272 hourly samples were continuously fed to the edge device, with the RPi4B executing the model twice as fast as the RPi3B+ in all quantisation modes. Full-integer quantisation produced the lowest execution time, with latencies of 2.19 s and 4.73 s for RPi4B and RPi3B+, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1412 ◽  
Author(s):  
Seung-Jae Lee ◽  
Hyung-Koo Yoon

Electrical resistivity is used to obtain various types of information for soil strata. Hence, the prediction of electrical resistivity is helpful to predict the future behavior of soil. The objective of this study is to apply deep learning algorithms, including deep neural network (DNN), long-short term memory (LSTM), and gated recurrent unit (GRU), to determine the reliability of electrical resistivity predictions to find the discontinuity of porosity and hydraulic conductivity. New DNN-based algorithms, i.e., LSTM-DNN and GRU-DNN, are also applied in this study. The electrical resistivity values are obtained using 101 electrodes installed at 2 m intervals on a mountaintop, and a Wenner array is selected to simplify the electrode installation and measurement. A total of 1650 electrical resistivity values are obtained for one measurement considering the electrode spacing, and accumulated data measured for 15 months are used in the deep learning analysis. A constant ratio of 6:2:2 among the training, validation, and test data, respectively, is used for the measured electrical resistivity, and the hyperparameters in each algorithm are moderated to improve the reliability. Based on the deep learning model results, the distributions of porosity and hydraulic conductivity are deduced, and an average depth of 25 m is estimated for the discontinuity depth. This paper shows that the deep learning technique is well used to predict electrical resistivity, porosity, hydraulic conductivity, and discontinuity depth.


2021 ◽  
Vol 11 (17) ◽  
pp. 7940
Author(s):  
Mohammed Al-Sarem ◽  
Abdullah Alsaeedi ◽  
Faisal Saeed ◽  
Wadii Boulila ◽  
Omair AmeerBakhsh

Spreading rumors in social media is considered under cybercrimes that affect people, societies, and governments. For instance, some criminals create rumors and send them on the internet, then other people help them to spread it. Spreading rumors can be an example of cyber abuse, where rumors or lies about the victim are posted on the internet to send threatening messages or to share the victim’s personal information. During pandemics, a large amount of rumors spreads on social media very fast, which have dramatic effects on people’s health. Detecting these rumors manually by the authorities is very difficult in these open platforms. Therefore, several researchers conducted studies on utilizing intelligent methods for detecting such rumors. The detection methods can be classified mainly into machine learning-based and deep learning-based methods. The deep learning methods have comparative advantages against machine learning ones as they do not require preprocessing and feature engineering processes and their performance showed superior enhancements in many fields. Therefore, this paper aims to propose a Novel Hybrid Deep Learning Model for Detecting COVID-19-related Rumors on Social Media (LSTM–PCNN). The proposed model is based on a Long Short-Term Memory (LSTM) and Concatenated Parallel Convolutional Neural Networks (PCNN). The experiments were conducted on an ArCOV-19 dataset that included 3157 tweets; 1480 of them were rumors (46.87%) and 1677 tweets were non-rumors (53.12%). The findings of the proposed model showed a superior performance compared to other methods in terms of accuracy, recall, precision, and F-score.


Synthetic Aperture Radar (SAR) images show promising results in monitoring maritime activities. Recently, Deep learning-based object detection techniques have impressive results in most detection applications but unfortunately there are challenging problems such as difficulty of detecting multiple ships, especially inshore ones. In this paper, a three-step ship detection process is described and a reliable and sensitive hybrid deep learning model is proposed as an efficient classifier in the middle step. The proposed model combines the finetuned Inception-Resnet-V2 model and the Long Short Term Memory model in two different approaches: parallel approach and cascaded approach. In experiments, the region proposal algorithm and the Non-Maxima suppression algorithm are applied in the first and last step in the three-step detection process. The comparative results show that the proposed approach in cascaded form outperforms the competitive recent state-of-the-art approaches by enhancement up to 16.3%, 16.5%, and 18.9% in terms of recall, precision and mean average precision, respectively. Moreover, the proposed approach shows high relative sensitivity for challenged cases of both inshore and offshore scenes by enhancement ratios up to 81.88% and 24.58%, respectively in recall perspective.


Sign in / Sign up

Export Citation Format

Share Document