scholarly journals An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2434
Author(s):  
Jucheng Yang ◽  
Feng Wei ◽  
Yaxin Bai ◽  
Meiran Zuo ◽  
Xiao Sun ◽  
...  

Convolutional neural networks and the per-pixel loss function have shown their potential to be the best combination for super-resolving severely degraded images. However, there are still challenges, such as the massive number of parameters requiring prohibitive memory and vast computing and storage resources as well as time-consuming training and testing. What is more, the per-pixel loss measured by L2 and the Peak Signal-to-Noise Ratio do not correlate well with human perception of image quality, since L2 simply does not capture the intricate characteristics of human visual systems. To address these issues, we propose an effective two-stage hourglass network with multi-task co-optimization, which enables the entire network to focus on training and testing time and inherent image patterns such as local luminance, contrast, structure and data distribution. Moreover, to avoid overwhelming memory overheads, our model is capable of performing real-time single image multi-scale super-resolution, so it is memory-friendly, meaning that memory space is utilized efficiently. In addition, in order to best use the underlying structure and perception of image quality and the intermediate estimates during the inference process, we introduce a cross-scale training strategy with 2×, 3× and 4× image super-resolution. This effective multi-task two-stage network with the cross-scale strategy for multi-scale image super-resolution is named EMTCM. Quantitative and qualitative experiment results show that the proposed EMTCM network outperforms state-of-the-art methods in recovering high-quality images.




2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wenyi Wang ◽  
Jun Hu ◽  
Xiaohong Liu ◽  
Jiying Zhao ◽  
Jianwen Chen

AbstractIn this paper, we propose a hybrid super-resolution method by combining global and local dictionary training in the sparse domain. In order to present and differentiate the feature mapping in different scales, a global dictionary set is trained in multiple structure scales, and a non-linear function is used to choose the appropriate dictionary to initially reconstruct the HR image. In addition, we introduce the Gaussian blur to the LR images to eliminate a widely used but inappropriate assumption that the low resolution (LR) images are generated by bicubic interpolation from high-resolution (HR) images. In order to deal with Gaussian blur, a local dictionary is generated and iteratively updated by K-means principal component analysis (K-PCA) and gradient decent (GD) to model the blur effect during the down-sampling. Compared with the state-of-the-art SR algorithms, the experimental results reveal that the proposed method can produce sharper boundaries and suppress undesired artifacts with the present of Gaussian blur. It implies that our method could be more effect in real applications and that the HR-LR mapping relation is more complicated than bicubic interpolation.



Optik ◽  
2021 ◽  
Vol 236 ◽  
pp. 166641
Author(s):  
Deyun Wei ◽  
Zhaowu Wang


2017 ◽  
Vol 76 (23) ◽  
pp. 24871-24902 ◽  
Author(s):  
Xiaomin Yang ◽  
Wei Wu ◽  
Kai Liu ◽  
Weilong Chen ◽  
Ping Zhang ◽  
...  






2020 ◽  
Vol 57 (16) ◽  
pp. 161012
Author(s):  
徐志刚 Xu Zhigang ◽  
闫娟娟 Yan Juanjuan ◽  
朱红蕾 Zhu Honglei


Sign in / Sign up

Export Citation Format

Share Document