scholarly journals Data Distribution Service Converter Based on the Open Platform Communications Unified Architecture Publish–Subscribe Protocol

Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2524
Author(s):  
Woongbin Sim ◽  
ByungKwen Song ◽  
Junho Shin ◽  
Taehun Kim

The open platform communications unified architecture (OPC UA) is a major industry-standard middleware based on the request–reply pattern, and the data distribution service (DDS) is an industry standard in the publish–subscribe form. The OPC UA cannot replace fieldbuses at the control and field levels. To facilitate real-time connectionless operation, the OPC Foundation added the publish–subscribe model—a new specification that supports broker functions, such as message queuing telemetry transport (MQTT), and advanced message queuing protocol (AMQP)—to the OPC UA Part 14 standard. This paper proposes a protocol converter for incorporation into the application layer of the DDS subscriber to facilitate interoperability among publisher–subscriber pairs. The proposed converter comprises a DDS gateway and bridge. The former exists inside the MQTT and AMQP brokers, which convert OPC UA publisher data into DDS messages prior to passing them on to the DDS subscriber. The DDS bridge passes the messages received from the DDS gateway to the OPC UA subscriber in the corresponding DDS application layer. The results reported in existing studies, and those obtained using the proposed converter, allow all devices supporting the OPC UA and OPC UA PubSub standards to realize DDS publish–subscribe interoperability.

2014 ◽  
Vol 926-930 ◽  
pp. 1984-1987
Author(s):  
Peng Wei Li ◽  
Hong Li Zhao ◽  
Hai Tao Yang ◽  
Shu Sun

The DDS middleware provides powerful support for data dissemination in the distributed real-time and embedded (DRE) systems, and supports multiple transport protocol (e.g. TCP, UDP and Multicast) that affect the end-to-end quality of service (QoS) properties (e.g. latency, jitter and reliability).In order to evaluate the performance of the transport protocol and then evaluate the affection on the DDS middleware QoS, this paper first briefly compares the common DDS implementations, and then presents performance evaluation and analysis of the transport protocol in OpenDDS with different environment configurations, at last presents the conclusion.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650063 ◽  
Author(s):  
Sadiq M. Sait ◽  
Ghalib A. Al-Hashim

Refining and petrochemical processing facilities utilize various process control applications to raise productivity and enhance plant operation. Client–server communication model is used for integrating these highly interacting applications across multiple network layers utilized in distributed control systems. This paper presents an optimum process control environment by merging sequential and regulatory control, advanced regulatory control, multivariable control, unit-based process control, and plant-wide advanced process control into a single collaborative automation platform to ensure optimum operation of processing equipment for achieving maximum yield of all manufacturing facilities. The main control module is replaced by a standard real-time server. The input/output racks are physically and logically decoupled from the controller by converting them into distributed autonomous process interface systems. Real-time data distribution service middleware is used for providing seamless cross-vendor interoperable communication among all process control applications and distributed autonomous process interface systems. Detailed performance analysis was conducted to evaluate the average communication latency and aggregate messaging capacity among process control applications and distributed autonomous process interface systems. The overall performance results confirm the viability of the new proposal as the basis for designing an optimal collaborative automation platform to handle all process control applications. It also does not impose any inherent limit on the aggregate data messaging capacity, making it suitable for scalable automation platforms.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650111 ◽  
Author(s):  
Sadiq M. Sait ◽  
Ghalib A. Al-Hashim

Oil and gas processing facilities utilize various process automation systems with proprietary controllers. As the systems age; older technologies become obsolete resulting in frequent premature capital investments to sustain their operation. This paper presents a new design of automation controller to provide inherent mechanisms for upgrades and/or partial replacement of any obsolete components without obligation for a complete system replacement throughout the expected life cycle of the processing facilities. The input/output racks are physically and logically decoupled from the controller by converting them into distributed autonomous process interface systems. The proprietary input/output communication between the conventional controller CPU and the associated input/output racks is replaced with standard real-time data distribution service middleware for providing seamless cross-vendor interoperable communication between the controller and the distributed autonomous process interface systems. The objective of this change is to allow flexibility of supply for all controller’s subcomponents from multiple vendors to safeguard against premature automation obsolescence challenges. Detailed performance analysis was conducted to evaluate the viability of using the standard real-time data distribution service middleware technology in the design of automation controller to replace the proprietary input/output communication. The key simulation measurements to demonstrate its performance sustainability while growing in controller’s size based on the number of input/output signals are communication latency, variation in packets delays, and communication throughput. The overall performance results confirm the viability of the new proposal as the basis for designing cost effective evergreen process automation solutions that would result in optimum total cost of ownership capital investment throughout the systems’ life span. The only limiting factor is the selected network infrastructure.


2020 ◽  
Vol 29 (13) ◽  
pp. 2050210
Author(s):  
Manel Takrouni ◽  
Azer Hasnaoui ◽  
Ikbel Mejri ◽  
Salem Hasnaoui

Today’s vehicles have become increasingly complex, as consumers demand more features and better quality in their cars. Most of these new features require additional electronic control units (ECU) and software control, constantly pushing back the limits of existing architectures and design methodologies. Indeed, modern automobiles have a larger number of critical time functions distributed and running simultaneously on each ECU. Data Distribution Service (DDS) is a publish/subscribe middleware specified by the international consortium Object Management Group (OMG), which makes the information available in real time, while offering a rich range of quality of service (QoS) policies. In this paper, we propose a new methodology to integrate DDS in automotive application. We evaluate the performance of our new design by testing the fulfillment of real time QoS requirements. We also compare the performance of the vehicle application when using FlexRay and Ethernet networks. Computations prove that the use of DDS over Gigabit Ethernet (GBE) is promising in the automotive field.


Sign in / Sign up

Export Citation Format

Share Document