scholarly journals Entropy-Based Low-Rank Approximation for Contrast Dielectric Target Detection with Through Wall Imaging System

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 634 ◽  
Author(s):  
Mandar Bivalkar ◽  
Dharmendra Singh ◽  
Hirokazu Kobayashi

In through wall imaging, clutter plays an important role in the detection of objects behind the wall. In the literature, extensive studies have been carried out to eliminate clutter in the case of targets with the same dielectric. Existing clutter reduction techniques, such as the sub-space approach, differential approach, entropy-based time gating, etc., are able to detect a single target or two targets with the same dielectric behind the wall. In a real-time scenario, it is not necessary that targets with the same dielectric will be present behind the wall. Very few studies are available for the detection of targets with different dielectrics; here we termed it “contrast target detection” in the same scene. Recently, low-rank approximation (LRA) was proposed to reduce random noise in the data. In this paper, a novel method based on entropy thresholding for low-rank approximation is introduced for contrast target detection. It was observed that our proposed method gives satisfactory results.

2019 ◽  
Vol 69 (5) ◽  
pp. 464-468
Author(s):  
Mandar K. Bivalkar ◽  
Bambam Kumar ◽  
Dharmendra Singh

Low dielectric materials referred as weak targets are very difficult to detect behind the wall in through wall imaging (TWI) due to strong reflections from wall. TWI Experimental data collected for low dielectric target behind the wall and transceiver on another side of the wall. Recently several researchers are using low-rank approximation (LRA) for reduction of random noise in the various data. Explore the possibilities of using LRA for TWI data for improving the detection of low dielectric material. A novel approach using modification of LRA with exploiting the noise subspace in singular value decomposition (SVD) to detect weak target behind the wall is introduced. LRA consider data has low rank in f-x domain for noisy data, local windows are implemented in LRA approach to satisfy the principle assumptions required by the LRA algorithm itself. Decomposed TWI data in the noise space of the SVD to detect the weak target adaptively. Results for modified LRA for detection of weak target behind the wall are very encouraging over LRA.


2021 ◽  
pp. 104802
Author(s):  
Rasoul Anvari ◽  
Amin Roshandel Kahoo ◽  
Mehrdad Soleimani Monfared ◽  
Mokhtar Mohammadi ◽  
Rebaz Mohammed Dler Omer ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2176
Author(s):  
Jiameng Pan ◽  
Qian Zhu ◽  
Qinglong Bao ◽  
Zengping Chen

This paper considers the coherent integration problem for moving target detection using frequency agile (FA) radar, involving range cell migration (RCM) and the nonuniform phase fluctuations among different pulses caused by range-agile frequency (R-AF) coupling and velocity-time-agile frequency (V-T-AF) coupling. After the analysis of the term corresponding to the phase fluctuation caused by V-T-AF coupling, the term can be regarded as related to an equivalent non-uniform slow time, and nonuniform fast Fourier transform (NUFFT) could be the solution. So a fast coherent integration method combining Radon Fourier transform (RFT) and NUFFT based on low-rank approximation, i.e., Radon-NUFFT, is proposed. In this method, the RCM is solved by Radon algorithm via target trajectory searching, the non-uniform phase fluctuation caused by R-AF coupling is compensated by constructing a compensation item corresponding to the range and agile frequency. In addition, the compensation of the non-uniform phase fluctuation caused by V-T-AF coupling is converted into a problem of spectral analysis of non-uniform sampling complex-valued signal, which is solved by the NUFFT based on low rank approximation. Compared with the existing methods, the proposed method can realize the coherent integration for FA radar accurately and quickly. The effectiveness of the proposed method is verified by simulation experiments.


2020 ◽  
Vol 14 (12) ◽  
pp. 2791-2798
Author(s):  
Xiaoqun Qiu ◽  
Zhen Chen ◽  
Saifullah Adnan ◽  
Hongwei He

2020 ◽  
Vol 6 ◽  
pp. 922-933
Author(s):  
M. Amine Hadj-Youcef ◽  
Francois Orieux ◽  
Alain Abergel ◽  
Aurelia Fraysse

2021 ◽  
Vol 11 (10) ◽  
pp. 4582
Author(s):  
Kensuke Tanioka ◽  
Satoru Hiwa

In the domain of functional magnetic resonance imaging (fMRI) data analysis, given two correlation matrices between regions of interest (ROIs) for the same subject, it is important to reveal relatively large differences to ensure accurate interpretation. However, clustering results based only on differences tend to be unsatisfactory and interpreting the features tends to be difficult because the differences likely suffer from noise. Therefore, to overcome these problems, we propose a new approach for dimensional reduction clustering. Methods: Our proposed dimensional reduction clustering approach consists of low-rank approximation and a clustering algorithm. The low-rank matrix, which reflects the difference, is estimated from the inner product of the difference matrix, not only from the difference. In addition, the low-rank matrix is calculated based on the majorize–minimization (MM) algorithm such that the difference is bounded within the range −1 to 1. For the clustering process, ordinal k-means is applied to the estimated low-rank matrix, which emphasizes the clustering structure. Results: Numerical simulations show that, compared with other approaches that are based only on differences, the proposed method provides superior performance in recovering the true clustering structure. Moreover, as demonstrated through a real-data example of brain activity measured via fMRI during the performance of a working memory task, the proposed method can visually provide interpretable community structures consisting of well-known brain functional networks, which can be associated with the human working memory system. Conclusions: The proposed dimensional reduction clustering approach is a very useful tool for revealing and interpreting the differences between correlation matrices, even when the true differences tend to be relatively small.


Sign in / Sign up

Export Citation Format

Share Document