weak target
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 49)

H-INDEX

10
(FIVE YEARS 4)

2021 ◽  
Vol 13 (23) ◽  
pp. 4942
Author(s):  
Bo Yan ◽  
Hua Zhang ◽  
Luping Xu ◽  
Yu Chen ◽  
Hongmin Lu

A 4D TBD approach is developed here for closely weak extended target tracking and overcoming heterogeneous clutter background and various clutter regions. The 4D measurements in this work are the points containing three positional information in spatial space and corresponding timestamp. The proposed method is mainly designed to address two issues. The first one is the dilemma between the weak target detection and difficult computation originating from the high dimensions of measurement. The second issue is the suppression of inhomogeneous background clutter and various clutter regions. The extension experiment using synthetic data showcases that no false alarm track would be built in the clutter regions, and the detection rate of close targets exceeds 94%. The experiments using real 3D radar also prove that the method works well in tracking closely maneuvering extended targets even if a clutter region exists.


2021 ◽  
Vol 32 (5) ◽  
pp. 1111-1118
Author(s):  
Pan Meiyan ◽  
Sun Jun ◽  
Yang Yuhao ◽  
Li Dasheng ◽  
Yu Junpeng

2021 ◽  
Author(s):  
You Shao ◽  
Guangyin Zheng ◽  
Fuchen Liu ◽  
Fuqing Jiang

2021 ◽  
Vol 173 ◽  
pp. 150-159
Author(s):  
Keming Mao ◽  
Gautam Srivastava ◽  
Reza M. Parizi ◽  
Mohammad S. Khan

2021 ◽  
Vol 13 (4) ◽  
pp. 812
Author(s):  
Jiahuan Zhang ◽  
Hongjun Song

Target detection on the sea-surface has always been a high-profile problem, and the detection of weak targets is one of the most difficult problems and the key issue under this problem. Traditional techniques, such as imaging, cannot effectively detect these types of targets, so researchers choose to start by mining the characteristics of the received echoes and other aspects for target detection. This paper proposes a false alarm rate (FAR) controllable deep forest model based on six-dimensional feature space for efficient and accurate detection of weak targets on the sea-surface. This is the first attempt at the deep forest model in this field. The validity of the model was verified on IPIX data, and the detection probability was compared with other proposed methods. Under the same FAR condition, the average detection accuracy rate of the proposed method could reach over 99.19%, which is 9.96% better than the results of the current most advanced method (K-NN FAR-controlled Detector). Experimental results show that multi-feature fusion and the use of a suitable detection framework have a positive effect on the detection of weak targets on the sea-surface.


Sign in / Sign up

Export Citation Format

Share Document