scholarly journals Antenna Phase Error Compensation for Terahertz Coded-Aperture Imaging

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 628
Author(s):  
Xingyue Liu ◽  
Chenggao Luo ◽  
Fengjiao Gan ◽  
Hongqiang Wang ◽  
Long Peng ◽  
...  

Coded-aperture antenna plays an important role in terahertz coded-aperture imaging radar system. However, the performance of a system is inevitably affected by the phase errors introduced by the coded-aperture antenna elements. In this paper, we propose a phase error compensation method by deducing a formula to compute all element phase errors accurately. According to the formula, the phase errors can be calibrated by using a calibrator and can be used to compensate the imaging model of the system. Numerical simulations demonstrate that the proposed method can effectively improve the imaging quality when the elemental phase error exceeds 10 ∘ .

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1079 ◽  
Author(s):  
Rui Xia ◽  
Yuanyue Guo ◽  
Weidong Chen ◽  
Dongjin Wang

Microwave staring correlated imaging (MSCI) can realize super resolution imaging without the limit of relative motion with the target. However, gain–phase errors generally exist in the multi-transmitter array, which results in imaging model mismatch and degrades the imaging performance considerably. In order to solve the problem of MSCI with gain–phase error in a large scene, a method of MSCI with strip-mode self-calibration of gain–phase errors is proposed. The method divides the whole imaging scene into multiple imaging strips, then the strip target scattering coefficient and the gain–phase errors are combined into a multi-parameter optimization problem that can be solved by alternate iteration, and the error estimation results of the previous strip can be carried into the next strip as the initial value. All strips are processed in multiple rounds, and the gain–phase error estimation results of the last strip can be taken as the initial value and substituted into the first strip for the correlated processing of the next round. Finally, the whole imaging in a large scene can be achieved by multi-strip image splicing. Numerical simulations validate its potential advantages to shorten the imaging time dramatically and improve the imaging and gain–phase error estimation performance.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4617 ◽  
Author(s):  
Peng ◽  
Luo ◽  
Deng ◽  
Wang ◽  
Chen ◽  
...  

Phaseless terahertz coded-aperture imaging (PL-TCAI) is a novel radar computational imaging method that utilizes the coded aperture and the incoherent detector array to achieve forward-looking and high-resolution imaging without relying on relative motion. In this paper, we propose a more reasonable and compact architecture for the PL-TCAI system and derive the imaging model of PL-TCAI based on the random frequency-hopping signal. Since most phase retrieval algorithms for PL-TCAI utilize only the intensity of echo signals to accurately reconstruct the target, excessive measurement samples are usually required. In order to reduce the number of measurement samples required for imaging, this paper proposes a sparse Wirtinger flow algorithm with optimal stepsize (SWFOS) by using the sparse prior of the target. The specific procedures of the SWFOS algorithm include the support recovery, initialization by truncated spectral method, iteration via gradient descent scheme, hard threshold operation, and stepsize optimization of iteration. Numerical simulations are performed, and the results show that the SWFOS algorithm not only has good performance for the PR problem, but can also sharply reduce the number of measurement samples required for imaging in the PL-TCAI system.


2021 ◽  
Vol 28 (1) ◽  
pp. 106-112
Author(s):  
Jianwei Wang ◽  
Yan Zhao

AbstractIn this paper, the expression for the SNR has been developed through the imaging model. It is concluded that the image SNR decreases with the increase of the number of light-emitting points of the target under the same hardware conditions and experimental parameters. Using uniform bright squares of different sizes as the target, the SNR of the reconstructed image is calculated. Simulation and prototype experiments have proved the correctness of the conclusion. Based on this conclusion, a method of segmented area imaging is proposed to improve the reconstructed image quality. The quality of all the images using this method with Wiener inverse filtering, R-Lucy deconvolution, and ADMM is better than the image quality obtained by full-area imaging.


Author(s):  
Ren Xiao-yuan Ren Xiao-yuan ◽  
Liu Hai-bo Liu Hai-bo ◽  
Li Jin-bing Li Jin-bing

2004 ◽  
Author(s):  
Jae Sub Hong ◽  
Santosh V. Vadawale ◽  
Minhua Zhang ◽  
Eric C. Bellm ◽  
Andrew Yousef ◽  
...  

Optik ◽  
2019 ◽  
Vol 178 ◽  
pp. 830-840
Author(s):  
Shuai Wang ◽  
Maosheng Xiang ◽  
Bingnan Wang ◽  
Fubo Zhang ◽  
Yirong Wu

Sign in / Sign up

Export Citation Format

Share Document