High Precision Sparse Reconstruction Scheme for Multiple Radar Mainlobe Jammings
Radar mainlobe jamming has attracted considerable attention in the field of electronic countermeasures. When the direction of arrival (DOA) of jamming is close to that of the target, the conventional antijamming methods are ineffective. Generally, mainlobe antijamming method based on blind source separation (BSS) can deteriorate the target direction estimation. Thus in this paper, a high precision sparse reconstruction scheme for multiple radar mainlobe jammings is proposed that does not suffer from failure or performance degradation inherent in the traditional method. First, the mainlobe jamming signal and desired signal components are extracted by using the joint approximation diagonalization of eigenmatrices (JADE) method. Then, oblique projection with sparse Bayesian learning (OP-SBL) method is employed to reconstruct the target with high precision. The proposed method is capable of suppressing at most three radar mainlobe jammers adaptively and also obtain DOA estimation error less than 0.1°. Simulation and experimental results confirm the effectiveness of the proposed method.