scholarly journals Design Space Exploration for YOLO Neural Network Accelerator

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1921
Author(s):  
Hongmin Huang ◽  
Zihao Liu ◽  
Taosheng Chen ◽  
Xianghong Hu ◽  
Qiming Zhang ◽  
...  

The You Only Look Once (YOLO) neural network has great advantages and extensive applications in computer vision. The convolutional layers are the most important part of the neural network and take up most of the computation time. Improving the efficiency of the convolution operations can greatly increase the speed of the neural network. Field programmable gate arrays (FPGAs) have been widely used in accelerators for convolutional neural networks (CNNs) thanks to their configurability and parallel computing. This paper proposes a design space exploration for the YOLO neural network based on FPGA. A data block transmission strategy is proposed and a multiply and accumulate (MAC) design, which consists of two 14 × 14 processing element (PE) matrices, is designed. The PE matrices are configurable for different CNNs according to the given required functions. In order to take full advantage of the limited logical resources and the memory bandwidth on the given FPGA device and to simultaneously achieve the best performance, an improved roofline model is used to evaluate the hardware design to balance the computing throughput and the memory bandwidth requirement. The accelerator achieves 41.99 giga operations per second (GOPS) and consumes 7.50 W running at the frequency of 100 MHz on the Xilinx ZC706 board.

Author(s):  
Tao Yang ◽  
Yadong Wei ◽  
Zhijun Tu ◽  
Haolun Zeng ◽  
Michel A. Kinsy ◽  
...  

Author(s):  
Abeer Al-Hyari ◽  
Shawki Areibi

This paper proposes a framework for design space exploration ofConvolutional Neural Networks (CNNs) using Genetic Algorithms(GAs). CNNs have many hyperparameters that need to be tunedcarefully in order to achieve favorable results when used for imageclassification tasks or similar vision applications. Genetic Algorithmsare adopted to efficiently traverse the huge search spaceof CNNs hyperparameters, and generate the best architecture thatfits the given task. Some of the hyperparameters that were testedinclude the number of convolutional and fully connected layers, thenumber of filters for each convolutional layer, and the number ofnodes in the fully connected layers. The proposed approach wastested using MNIST dataset for handwritten digit classification andresults obtained indicate that the proposed approach is able to generatea CNN architecture with validation accuracy up to 96.66% onaverage.


Sign in / Sign up

Export Citation Format

Share Document