scholarly journals Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2264 ◽  
Author(s):  
Sebastian Ammann ◽  
Andreas Ammann ◽  
Rebecca Ravotti ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

The problem of emulsification between Phase Change Material (PCM) and Heat Transfer Fluid (HTF) in direct contact latent heat storage systems has been reported in various studies. This issue causes the PCM to flow out of the storage tank and crystallize at unwanted locations and thus presents a major limitation for the proper operation of such systems. These anomalies become more pronounced when high HTF flow rates are employed with the aim to achieve fast heat transfer rates. The goal of this paper is to find a method which will enable the fast separation of the formed emulsion and thus the uninterrupted operation of the storage unit. In this study, three separation methods were examined and the use of superhydrophobic filters was chosen as the best candidate for the demulsification of the PCM and HTF mixtures. The filter was produced by processing of a melamine sponge with different superhydrophobic adhesives and was tested with emulsions closely resembling the ones formed in a real direct contact setup. The superhydrophobic filter obtained, was able to separate the emulsions effectively while presenting a very high permeability (up to 1,194,980 kg h−1 m−2 bar−1). This is the first time the use of a superhydrophobic sponge has been investigated in the context of demulsification in direct contact latent heat storage.

2020 ◽  
Vol 28 ◽  
pp. 101178 ◽  
Author(s):  
Sven Kunkel ◽  
Tobias Teumer ◽  
Patrick Dörnhofer ◽  
Frederik Wunder ◽  
Jens-Uwe Repke ◽  
...  

2018 ◽  
Vol 145 ◽  
pp. 71-79 ◽  
Author(s):  
Sven Kunkel ◽  
Tobias Teumer ◽  
Patrick Dörnhofer ◽  
Kerstin Schlachter ◽  
Yohana Weldeslasie ◽  
...  

Heat Transfer ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 2659-2685
Author(s):  
Digant S. Mehta ◽  
Bhavesh Vaghela ◽  
Manish K. Rathod ◽  
Jyotirmay Banerjee

Green ◽  
2011 ◽  
Vol 1 (2) ◽  
Author(s):  
L. Chidambaram ◽  
A. S. Ramana ◽  
G. Kamaraj ◽  
R. Velraj

AbstractConventional cooling technologies that utilize harmful refrigerants consume more energy and cause peak loads leading to negative environmental impacts. As the world grapples with the energy and environmental crisis, there is an urgent need to develop and promote environmentally benign sustainable cooling technologies. Solar cooling is one such promising technology, given the fact that solar energy is the cheapest and most widely available renewable energy that matches the cooling load requirements. However thermal storage systems are essential to overcome the disadvantage of the intermittent nature of solar energy and variations in the cooling demand. The enhanced utilization of solar energy and other consequences of thermal storage integrated systems have gained the attention of researchers in recent years. The concept of combined sensible and latent heat storage system is successfully introduced in several applications and it has many advantages. This paper presents the performance of the solar collector system and the charging characteristics of a PCM based latent heat thermal storage unit, which is designed to provide continuous supply of heat for the operation of 1 kW vapor absorption refrigeration unit. Investigations on PCM integrated thermal storage system have revealed improvement in heat storage capacity, lower heat loss and an increased solar collector efficiency due to better thermal stratification.


Sign in / Sign up

Export Citation Format

Share Document