scholarly journals Interval Optimization-Based Unit Commitment for Deep Peak Regulation of Thermal Units

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 922 ◽  
Author(s):  
Yinping Yang ◽  
Chao Qin ◽  
Yuan Zeng ◽  
Chengshan Wang

The deep peak regulation of thermal units is an important measure for coping with significant wind power penetration. In this paper, based on interval optimization, a novel multi-objective unit commitment method is proposed considering the deep peak regulation of thermal units. In the proposed method, a thermal power cost model was developed to accurately determine the economic performance of three different peak regulation scenarios, particularly of the deep peak regulation scenario. The midpoint and width of the cost interval are simultaneously considered in the optimization process. The non-dominated sorting GA-II (NSGA-II) algorithm was incorporated into the model for a coordinated control of the midpoint and width of the obtained cost interval for further optimization. Considering that significant wind penetration results in greater nodal variations, the affine arithmetic was employed to solve nodal uncertainties, so that all system variations can be addressed. The method proposed in this paper was validated by a modified IEEE-39 bus system. The results showed that it serves as a useful tool for power dispatchers to obtain robust and economic solutions at different wind power prediction accuracies.

2013 ◽  
Vol 772 ◽  
pp. 705-710
Author(s):  
Li Wei Ju ◽  
Zhong Fu Tan ◽  
He Yin ◽  
Zhi Hong Chen

In order to be able to absorb the abandoned wind, increasing wind-connect amount, the paper study the way of wind power, thermal power joint run and puts forward wind power, thermal power joint run optimization model based on the energy-saving generation dispatching way under the environment of TOU price and the target of minimizing the cost of coal-fired cost, unit commitment and pollution emissions. The numerical example finds, the TOU price can realize the goal of peak load shifting, increasing the electricity demand in the low load and reducing electricity demand in the peak load. The model can increase the amount of wind-connect grid, absorb the abandoned wind, reduce the use of coal-fired units under the environment, increase the average electricity sales price and profit of Power Company. Therefore, the model has significant economical environmental benefits


Author(s):  
Gao Yang ◽  
Shu Xinlei ◽  
Liu Baoliang ◽  
Sun Wenzhong ◽  
Zhao Mingjiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document