scholarly journals A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2508 ◽  
Author(s):  
Ahmadipour ◽  
Hizam ◽  
Othman ◽  
Mohd Radzi ◽  
Chireh

A new protection scheme based on applying a combination of wavelet multi-resolution singular spectrum entropy and support vector machine is proposed to identify different types of grid faults in a three-phase grid-tied photovoltaic system. In this technique, discrete wavelet transform with multi-resolution singular spectrum entropy is utilized to extract the unique features of three-phase voltage signals at the point of common coupling. The three-phase voltage signals are decomposed to provide detail and approximation coefficients of wavelet transform. Then, various features between different types of grid faults can be extracted by a combination of multi resolution analysis and spectrum analysis with entropy as the output. The constructed features vector is utilized as input data of a support vector machine classifier to identify and classify various types of faults. The results illustrate that the proposed intelligent technique not only recognizes different types of grid faults correctly, but also performs quickly in identifying grid faults in a grid-connected photovoltaic system. Apart from this, a graphical investigation is executed to observe the effects of different types of grid faults in photovoltaic (PV) operation which highlight the necessity of intelligent protection methods to protect PV systems.

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2018 ◽  
Vol 7 (4.10) ◽  
pp. 935
Author(s):  
Vasudha Harlalka ◽  
Viraj Pradip Puntambekar ◽  
Kalugotla Raviteja ◽  
P. Mahalakshmi

Epilepsy is a prevalent condition, mainly affecting the nervous system of the human body. Electroencephalogram (EEG) is used to evaluate and examine the seizures caused due to epilepsy. The issue of low precision and poor comprehensiveness is worked upon using dual tree- complex wavelet transform (DT-CWT), rather than discrete wavelet transform (DWT). Here, Logarithmic energy entropy (LogEn) and Shannon entropy (ShanEn) are taken as input features. These features are fed to Linear Support Vector Machine     (L-SVM) Classifier. For LogEn, accuracy of 100% for A-E, 99.34% for AB-E, and 98.67% for AC-E is achieved. While ShanEn combinations give accuracy of 96.67% for AB-E and 95.5% for ABC-E. These results showcase that our methodology is suitable for overcoming the problem and can become an alternate option for clinical diagnosis.  


Sign in / Sign up

Export Citation Format

Share Document