scholarly journals Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3809 ◽  
Author(s):  
Zengping Wang ◽  
Bing Zhao ◽  
Haibo Guo ◽  
Lingling Tang ◽  
Yuexing Peng

Short term load forecasting (STLF) is one of the basic techniques for economic operation of the power grid. Electrical load consumption can be affected by both internal and external factors so that it is hard to forecast accurately due to the random influencing factors such as weather. Besides complicated and numerous internal patterns, electrical load shows obvious yearly, seasonal, and weekly quasi-periodicity. Traditional regression-based models and shallow neural network models cannot accurately learn the complicated inner patterns of the electrical load. Long short-term memory (LSTM) model features a strong learning capacity to capture the time dependence of the time series and presents the state-of-the-art performance. However, as the time span increases, LSTM becomes much harder to train because it cannot completely avoid the vanishing gradient problem in recurrent neural networks. Then, LSTM models cannot capture the dependence over large time span which is of potency to enhance STLF. Moreover, electrical loads feature data imbalance where some load patterns in high/low temperature zones are more complicated but occur much less often than those in mild temperature zones, which severely degrades the LSTM-based STLF algorithms. To fully exploit the information beneath the high correlation of load segments over large time spans and combat the data imbalance, a deep ensemble learning model within active learning framework is proposed, which consists of a selector and a predictor. The selector actively selects several key load segments with the most similar pattern as the current one to train the predictor, and the predictor is an ensemble learning-based deep learning machine integrating LSTM and multi-layer preceptor (MLP). The LSTM is capable of capturing the short-term dependence of the electrical load, and the MLP integrates both the key history load segments and the outcome of LSTM for better forecasting. The proposed model was evaluated over an open dataset, and the results verify its advantage over the existing STLF models.

2021 ◽  
Author(s):  
Fathun Fattah ◽  
Pritom Mojumder ◽  
Azmol Ahmed Fuad ◽  
Mohiuddin Ahmad ◽  
Eklas hossain

This work entails producing load forecasting through lstm and lstm ensembled networks and put up a comparative picture between the two. Our work establishes that lstm ensemble learning can produce a better prediction compared to single lstm networks. We tried to quantify the improvement and assess the economic impact that it can have on the utility companies.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4612 ◽  
Author(s):  
Zhaorui Meng ◽  
Xianze Xu

Accurate electrical load forecasting plays an important role in power system operation. An effective load forecasting approach can improve the operation efficiency of a power system. This paper proposes the seasonal and trend adjustment attention encoder–decoder (STA–AED), a hybrid short-term load forecasting approach based on a multi-head attention encoder–decoder module with seasonal and trend adjustment. A seasonal and trend decomposing technique is used to preprocess the original electrical load data. Each decomposed datum is regressed to predict the future electric load value by utilizing the encoder–decoder network with the multi-head attention mechanism. With the multi-head attention mechanism, STA–AED can interpret the prediction results more effectively. A large number of experiments and extensive comparisons have been carried out with a load forecasting dataset from the United States. The proposed hybrid STA–AED model is superior to the other five counterpart models such as random forest, gradient boosting decision tree (GBDT), gated recurrent units (GRUs), Encoder–Decoder, and Encoder–Decoder with multi-head attention. The proposed hybrid model shows the best prediction accuracy in 14 out of 15 zones in terms of both root mean square error (RMSE) and mean absolute percentage error (MAPE).


Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1554 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Rui Wang ◽  
Tao Zhang ◽  
Yajie Liu ◽  
Yabing Zha

Sign in / Sign up

Export Citation Format

Share Document