scholarly journals Traffic-Condition-Prediction-Based HMA-FIS Energy-Management Strategy for Fuel-Cell Electric Vehicles

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4426 ◽  
Author(s):  
Gang Yao ◽  
Changbo Du ◽  
Quanbo Ge ◽  
Haoyu Jiang ◽  
Yide Wang ◽  
...  

In the field of Fuel Cell Electric Vehicles (FCEVs), a fuel-cell stack usually works together with a battery to improve powertrain performance. In this hybrid-power system, an Energy Management Strategy (EMS) is essential to configure the hybrid-power sources to provide sufficient energy for driving the FCEV in different traffic conditions. The EMS determines the overall performance of the power supply system; accordingly, EMS research has important theoretical significance and application values on the improvement of energy-utilization efficiency and the serviceability of vehicles’ hybrid-power sources. To overcome the deficiency of apparent filtering lag and improve the adaptability of an EMS to different traffic conditions, this paper proposes a novel EMS based on traffic-condition predictions, frequency decoupling and a Fuzzy Inference System (FIS). An Artificial Neural Network (ANN) was designed to predict traffic conditions according to the vehicle’s running parameters; then, a Hull Moving Average (HMA) algorithm, with filter-window width decided by the prediction result, is introduced to split the demanded power and keep low-frequency components in order to meet the load characteristics of the fuel cell; afterward, an FIS was applied to manage power flows of the FCEV’s hybrid-power sources and maintain the State of Change (SoC) of the battery in a predefined range. Finally, an FCEV simulation platform was built with MATLAB/Simulink and comparison simulations were carried out with the standard test cycle of the Worldwide harmonized Light vehicle Test Procedures (WLTPs). Simulation results showed that the proposed EMS could efficiently coordinate the hybrid-power sources and support the FCEV in following the reference speed with negligible control errors and sufficient power supply; the SoC of the battery was also maintained with good adaptability in different driving conditions.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4362 ◽  
Author(s):  
Tri Cuong Do ◽  
Hoai Vu Anh Truong ◽  
Hoang Vu Dao ◽  
Cong Minh Ho ◽  
Xuan Dinh To ◽  
...  

Construction machines are heavy-duty equipment and a major contributor to the environmental pollution. By using only electric motors instead of an internal combustion engine, the problems of low engine efficiency and air pollution can be solved. This paper proposed a novel energy management strategy for a PEM fuel cell excavator with a supercapacitor/battery hybrid power source. The fuel cell is the main power supply for most of the excavator workload while the battery/supercapacitor is the energy storage device, which supplies additional required power and recovers energy. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software, where the fuel cell, battery, supercapacitor model, and the energy management algorithm were developed in a Simulink environment while the excavator model was designed in an AMESim environment. In this work, the energy management strategy was designed to concurrently account for power supply performance from the hybrid power sources as well as from fuel cells, and battery lifespan. The control design was proposed to distribute the power demand optimally from the excavator to the hybrid power sources in different working conditions. The simulation results were presented to demonstrate the good performance of the system. The effectiveness of the proposed energy management strategy was validated. Compared with the conventional strategies where the task requirements cannot be achieved or system stability cannot be accomplished, the proposed algorithms perfectly satisfied the working conditions.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3810
Author(s):  
Laeun Kwon ◽  
Dae-Seung Cho ◽  
Changsun Ahn

The design of an energy management strategy is critical to improving the fuel efficiency of a vehicle system with an alternative powertrain system, such as hybrid electric vehicles or fuel cell electric vehicles. In particular, in fuel cell electric vehicles, the energy management strategy should consider system degradation and fuel savings because the hardware cost of the fuel cell system is much higher than that of a conventional powertrain system. In this paper, an easily implantable near-optimal energy management controller is proposed. The proposed controller distributes power generation between the fuel cell and the battery to simultaneously minimize system degradation and fuel usage. The controller is designed to consider the degradation cost and fuel cost in the framework of the equivalent consumption minimization strategy concept. The proposed controller was validated with a fuel cell electric vehicle model in MATLAB/Simulink (MathWorks, Natick, USA). The proposed control strategy showed significant overall cost reduction compared to a thermostat control strategy and a conventional Equivalent Consumption Minimization Strategy (ECMS) strategy.


Author(s):  
Pengfei Zou ◽  
Fazhan Tao ◽  
Zhumu Fu ◽  
Pengju Si ◽  
Chao Ma

In this paper, the hybrid electric vehicle is equipped with fuel cell/battery/supercapacitor as the research object, the optimal energy management strategy (EMS) is proposed by combining wavelet transform (WT) method and equivalent consumption minimization strategy (ECMS) for reducing hydrogen consumption and prolonging the lifespan of power sources. Firstly, the WT method is employed to separate power demand of vehicles into high-frequency part supplied by supercapacitor and low-frequency part allocated to fuel cell and battery, which can effectively reduce the fluctuation of fuel cell and battery to prolong their lifespan. Then, considering the low-frequency power, the optimal SOC of battery is used to design the equivalent factor of the ECMS method to improve the fuel economy. The proposed hierarchical EMS can realize a trade-off between the lifespan of power sources and fuel economy of vehicles. Finally, the effectiveness of the proposed EMS is verified by ADVISOR, and comparison results are given compared with the traditional ECMS method and ECMS combining the filter.


Sign in / Sign up

Export Citation Format

Share Document