scholarly journals High Impedance Fault Detection and Location in Combined Overhead Line and Underground Cable Distribution Networks Equipped with Data Loggers

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2331 ◽  
Author(s):  
Saeid Khavari ◽  
Rahman Dashti ◽  
Hamid Reza Shaker ◽  
Athila Santos

Power distribution networks are vulnerable to different faults, which compromise the grid performance and need to be managed effectively. Automatic and accurate fault detection and location are key components of effective fault management. This paper proposes a new framework for fault detection and location for smart distribution networks that are equipped with data loggers. The framework supports networks with mixed overhead lines and underground cables. The proposed framework consists of area detection, faulty section identification, and high impedance fault location. Firstly, the faulty zone and section are detected based on the operation of over-current relays and digital fault recorders. Then, by comparing the recorded traveling times at both ends of lines, which are related to the protection zone, the faulty line is identified. In the last step, the location of the fault is estimated based on discrete wavelet transform. The proposed method is tested on a 20 kV 13 node network, which is composed of overhead lines and underground cables. The method is tested in both balanced and unbalanced configurations. The obtained results confirm the advantages of the proposed method compared with the current state-of-the art.

Author(s):  
Md Ferdouse Hossain Bhuiya ◽  
Rohaiza Hamdan ◽  
Dur Mohammad Soomro ◽  
Abdelrehman Omer Idris ◽  
Hussain Sharif

This paper proposes an analysis of high-impedance fault detection algorithms for medium voltage distribution lines based on the discrete wavelet transform (DWT) technique and a more advanced technique named independent component analysis (ICA) independently. Three-phase distribution line model and two diodes high impedance fault model, which represents the unsymmetrical fault current of electric arc, simulated using MATLAB/Simulink. High impedance fault (HIF) detection algorithm initially analyzes the sampled current waveforms through DWT and the resultant third level high-frequency components “d3” coefficients are analyzed through one cycle moving window approach. The proposed algorithm successfully detects any HIF in the distribution current even if there is a slight or no difference in the amplitude of the HIF and the waveform of the phase current. On the other hand, the ICA more developed algorithm than DWT successfully separated the noise signals from the obtained current waveforms and HIF noise signals can be differentiated with non-HIF noise signals. Because of this reason ICA is chosen in this research. The detected HIF current can be from 50 ma and up.


2021 ◽  
pp. 107676
Author(s):  
José Genilson Sousa Carvalho ◽  
Aryfrance Rocha Almeida ◽  
Danton Diego Ferreira ◽  
Bartolomeu Ferreira dos Santos ◽  
Luis Henrique Pereira Vasconcelos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document