scholarly journals Benchmarking of Modular Multilevel Converter Topologies for ES-STATCOM Realization

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3384
Author(s):  
Sanjay K. Chaudhary ◽  
Allan F. Cupertino ◽  
Remus Teodorescu ◽  
Jan R. Svensson

In recent years, the integration of the high-power static synchronous compensator (STATCOM) and energy storage in the same device has gained interest. Such a system is referred to as ES-STATCOM. Modular multilevel converter (MMC) topologies constitute a promising converter family for ES-STATCOM realization, providing a modular and scalable solution with a high efficiency that handles high-power and high-voltage ratings in grid applications. There is a gap in technical literature discussing the design and the comparison of MMC-based ES-STATCOMs while utilizing batteries to find the most suitable MMC topology for ES-STATCOMs. Therefore, this paper benchmarks MMC family members for ES-STATCOM realization. Both centralized and distributed energy storage approaches are investigated. The proposed design flowcharts can be employed for comparison and optimization purposes. In total, seven topologies are compared in terms of number of cells, required silicon area and total battery volume. Different semiconductor devices and battery types are analyzed. The result indicates that centralized energy storage systems are the most suitable due to their design flexibility, low volume and small silicon area. Moreover, the possibility of using over-modulation in MMC using bridge cells has an important role in the optimization of ES-STATCOM. The results for the adopted case study shows that the decentralized approach can lead to 55% higher silicon area and 30% higher volume than the centralized approach. The double-star bridge cell MMC with centralized energy storage is determined as the most suitable solution for ES-STATCOM systems.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4840
Author(s):  
Walid Ahmed Maher Ghoneim ◽  
Ahmed Alaa Aziz

Modularity, flexible scalability, and high efficiency are some of the aspects that have paved the way toward the modular multilevel converter (MMC) being regarded as one of the most encouraging converter technologies for medium-/high-power applications; however, the precharging process of all the distributed submodules’ capacitors during the MMC’s start-up is considered to be a very challenging technical problem, which has been the center of attention since the emergence of the MMC back in 2002. In this paper, a new start-up method based on the sequential capacitors’ charging method is introduced for precharging the single-phase MMC from the DC grid while drastically reducing the charging (start-up) time. A detailed design algorithm for the proposed start-up method is presented. The findings of the simulation of the proposed method are provided to illustrate the capability of the suggested method.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4691
Author(s):  
Peng Chen ◽  
Jilong Liu ◽  
Fei Xiao ◽  
Zhichao Zhu ◽  
Zhaojie Huang

The modular multilevel converter–bidirectional DC–DC converter (MMC–BDC) has been proposed to be utilized in the vessel integrated power system to interconnect the medium voltage bus and the distributed energy storage elements. In the shipboard applications, MMC–BDC faces unbalanced sub-module power operation because of the inconsistent state-of-charge (SOC) of the energy storage elements. Researchers have investigated into the unbalanced operation principle of MMC–BDC and proposed some unbalanced operation control strategies, but these traditional strategies do not perform well in both aspects of operating range and efficiency. Therefore, this paper proposes a novel Lyapunov-function-based feedback linearization control strategy for the independent sub-module voltage control of MMC–BDC, which not only shows wide unbalanced operation range and high efficiency, but also realizes the decoupling and symmetrical control of the sub-module capacitor voltages.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Gustavo F. Gontijo ◽  
Dezso Sera ◽  
Mattia Ricco ◽  
Laszlo Mathe ◽  
Tamas Kerekes ◽  
...  

2017 ◽  
Vol 65 (5) ◽  
pp. 685-694
Author(s):  
P. Blaszczyk ◽  
K. Koska ◽  
P. Klimczak

Abstract The modular multilevel converter (MMC) is a well-known solution for medium and high voltage high power converter systems. This paper deals with energy balancing of MMCs. The analysis includes multi-converter systems. In order to provide clear view, the MMC control system is divided into hierarchical levels. Details of control and balancing methods are discussed for each level separately. Finally, experimental results, based on multi-converter test setup, are presented.


Sign in / Sign up

Export Citation Format

Share Document