scholarly journals Can Effects of Temperature on Two-Phase Gas/Oil-Relative Permeabilities in Porous Media Be Ignored? A Critical Analysis

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3444
Author(s):  
Saket Kumar ◽  
Sajjad Esmaeili ◽  
Hemanta Sarma ◽  
Brij Maini

Thermal recovery processes for heavy oil exploitation involve three-phase flow at elevated temperatures. The mathematical modeling of such processes necessitates the account of changes in the rock–fluid system’s flow behavior as the temperature rises. To this end, numerous studies on effects of the temperature on relative permeabilities have been reported in the literature. Compared to studies on the temperature effects on oil/water-relative permeabilities, studies (and hence, data) on gas/oil-relative permeabilities are limited. However, the role of temperature on both gas/oil and oil/water-relative permeabilities has been a topic of much discussion, contradiction and debate. The jury is still out, without a consensus, with several contradictory hypotheses, even for the limited number of studies on gas/oil-relative permeabilities. This study presents a critical analysis of studies on gas/oil-relative permeabilities as reported in the literature, and puts forward an undeniable argument that the temperature does indeed impact gas/oil-relative permeabilities and the other fluid–fluid properties contributing to flow in the reservoir, particularly in a thermal recovery process. It further concludes that such thermal effects on relative permeabilities must be accounted for, properly and adequately, in reservoir simulation studies using numerical models. The paper presents a review of most cited studies since the 1940s and identifies the possible primary causes that contribute to contradictory results among them, such as differences in experimental methodologies, experimental difficulties in flow data acquisition, impact of flow instabilities during flooding, and the differences in the specific impact of temperature on different rock–fluid systems. We first examined the experimental techniques used in measurements of oil/gas-relative permeabilities and identified the challenges involved in obtaining reliable results. Then, the effect of temperature on other rock–fluid properties that may affect the relative permeability was examined. Finally, we assessed the effect of temperature on parameters that characterized the two-phase oil/gas-relative permeability data, including the irreducible water saturation, residual oil saturation and critical gas saturation. Through this critical review of the existing literature on the effect of temperature on gas/oil-relative permeabilities, we conclude that it is an important area that suffers profoundly from a lack of a comprehensive understanding of the degree and extent of how the temperature affects relative permeabilities in thermal recovery processes, and therefore, it is an area that needs further focused research to address various contradictory hypotheses and to describe the flow in the reservoir more reliably.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Pablo Druetta ◽  
Francesco Picchioni

Chemical Enhanced Oil Recovery (cEOR) processes comprise a number of techniques whichmodify the rock/fluid properties in order to mobilize the remaining oil. Among these, surfactantflooding is one of the most used and well-known processes; it is mainly used to decrease the interfacialenergy between the phases and thus lowering the residual oil saturation. A novel two-dimensionalflooding simulator is presented for a four-component (water, petroleum, surfactant, salt), two-phase(aqueous, oleous) model in porous media. The system is then solved using a second-order finitedifference method with the IMPEC (IMplicit Pressure and Explicit Concentration) scheme. The oilrecovery efficiency evidenced a strong dependency on the chemical component properties and itsphase behaviour. In order to accurately model the latter, the simulator uses and improves a simplifiedternary diagram, introducing the dependence of the partition coefficient on the salt concentration.Results showed that the surfactant partitioning between the phases is the most important parameterduring the EOR process. Moreover, the presence of salt affects this partitioning coefficient, modifyingconsiderably the sweeping efficiency. Therefore, the control of the salinity in the injection water isdeemed fundamental for the success of EOR operations with surfactants.


2014 ◽  
Vol 962-965 ◽  
pp. 500-505
Author(s):  
He Hua Wang ◽  
Ling Wu ◽  
Ting Ting Feng ◽  
Yuan Sheng Li ◽  
Jian Yang

Reservoir with gas cap, edge water is complex. And the oil-water and oil-gas interface will seriously influence the performance. Once out of control, gas and water invasion may occur, then oil productivity will fall sharply and oil recovery will become low. In addition, the oil penetrating into gas cap would lead to oil loss. So, the controlling methods are crucial. In this paper, we study the productive characteristics of a certain reservoir with gas cap, edge water and narrow oil ring. For the phenomenon several productive wells appeared gas breakthrough and water invasion after putting into production, this paper puts up a strategy shutting in high gas-oil ratio wells and blocking off gas breakthrough layers that proved effective. At the same time, adjusting oil and gas distribution underground by gas-water alternate also be proved practicable.


Author(s):  
Jose Zaghloul ◽  
Michael Adewumi ◽  
M. Thaddeus Ityokumbul

The transport of unprocessed gas streams in production and gathering pipelines is becoming more attractive for new developments, particularly those is less friendly enviroments such as deep offshore locations. Transporting gas, oil, and water together from wells in satellite fields to existing processing facilities reduces the investments required for expanding production. However, engineers often face several problems when designing these systems. These problems include reduced flow capacity, corrosion, emulsion, asphaltene or wax deposition, and hydrate formation. Engineers need a tool to understand how the fluids travel together, quantify the flow reduction in the pipe, and determine where, how much, and the type of liquid that would from in a pipe. The present work provides a fundamental understanding of the thermodynamics and hydrodynamic mechanisms of this type of flow. We present a model that couples complex hydrodynamic and thermodynamic models for describing the behavior of fluids traveling in near-horizontal pipes. The model incorporates: • A hydrodynamic formulation for three-phase flow in pipes. • A thermodynamic model capable of performing two-phase and three-phase flow calculations in an accurate, fast and reliable manner. • A new theoretical approach for determining flow pattern transitions in three-phase (gas-oil-water) flow, and closure models that effectively handle different three-phase flow patterns and their transitions. The unified two-fluid model developed herein is demonstrated to be capable of handling systems exhibiting two-phase (gas-water and gas-oil) and three-phase (gas-oil-water) flow. Model predictions were compared against field and experimental data with excellent matches. The hydrodynamic model allows: 1) the determination of flow reduction due to the condensation of liquid(s) in the pipe, 2) assessment of the potential for forming substances that might affect the integrity of the pipe, and 3) evaluation of the possible measures for improving the deliverability of the pipeline.


1999 ◽  
Author(s):  
Akin Serhat ◽  
Louis M. Castanier ◽  
William E. Brigham

Sign in / Sign up

Export Citation Format

Share Document