scholarly journals A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4531
Author(s):  
N. Kanagaraj ◽  
Hegazy Rezk ◽  
Mohamed R. Gomaa

Thermoelectric generation technology is considered to be one of the viable methods to convert waste heat energy directly into electricity. The utilization of this technology has been impeded due to low energy conversion efficiency. This paper aims to improve the energy conversion efficiency of the thermoelectric generator (TEG) model with a novel maximum power point tracking (MPPT) technique. A variable fractional order fuzzy logic controller (VFOFLC)-based MPPT technique is proposed in the present work in which the operating point of the TEG is moved quickly towards an optimal position to increase the energy harvesting. The fraction order term α, introduced in the MPPT algorithm, will expand or contract the input domain of the fuzzy logic controller (FLC to shorten the tracking time and maintain a steady-state output around the maximum power point (MPP). The performance of the proposed MPPT technique was verified with the TEG model by simulation using MATLAB /SIMULINK software. Then, the overall performance of the VFOFLC-based MPPT technique was analyzed and compared with Perturb and observe (P&O) and incremental resistance (INR)-based MPPT techniques. The obtained results confirm that the proposed MPPT technique can improve the energy conversion efficiency of the TEG by harvesting the maximum power within a shorter time and maintaining a steady-state output when compared to other techniques.

Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 71
Author(s):  
Maroua Bouksaim ◽  
Mohcin Mekhfioui ◽  
Mohamed Nabil Srifi

Maximum power point tracking (MPPT) algorithms are used in photovoltaic applications to extract the maximum power that the photovoltaic (PV) panel can produce, which depends on two inputs that are: temperature and irradiance. A DC-DC converter is inserted between the photovoltaic panel and the load to obtain the desired voltage level on the load side. In this paper, incremental conductance (INC) algorithm, modified INC, and fuzzy logic controller (FLC) are designed and assessed to improve energy conversion efficiency. These algorithms are applied to the control of boost converter for tracking the maximum power point (MPP). The modified INC offers fast response and good performance in terms of oscillations than conventional INC and FLC. The Matlab/Simulink environment is used to analyze, interpret the simulation results, and show the performances of each algorithm; and Proteus-based Arduino environment is used to implement the three methods in order to compare the Matlab simulation results with measurements acquired during implementation that is similar to real experiment.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Ahmad Shaharuddin Mat Su, ◽  
Rasli Abd Ghani ◽  
Slamet Slamet

This paper presents the proposed model and simulation of a DC to DC converter with maximum power point tracking (MPPT) using fuzzy logic controller (FLC) for a standalone Photovoltaic (PV) System. This research will focus on the developing high performance DC to DC converter with fuzzy logic controller based to extract the maximum power that generated by the PV panel. The system composed of the PV array and DC-DC boost converter with MPPT system. The maximum power point tracking control is based on adaptive fuzzy logic to control ON/OFF time of IGBT switch of DC-DC boost converter. The proposed DC to DC converter is designed by using the Multisim software while the controller programme will be carried out by using the Matlab Simulink software. Pulse width modulation will be generated by the controller to trigger the IGBT gate. The performance of the proposed model is evaluated by the simulation and the result show that our proposed converter can convert more power from generated voltage. By using the fuzzy logic method to track the maximum power of the PV array, it is faster and the voltage is stable.


Author(s):  
N. Sivakumar ◽  
A. Sumathi

This paper proposes fuzzy logic controller based seven-level hybrid inverter for photovoltaic systems with sinusoidal pulse width-modulation (SPWM) techniques. Multi-Level Inverter technology have been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of high dv/dt rating, higher switching frequency, unlimited power processing, shape of output waveform and desired level of output voltage, current and frequency adjustment.This topology can be used there by enabling the scheme to reduce the Total Harmonic Distortion (THD) for high voltage applications. The Maximum Power Point Tracking algorithm is also used for extracting maximum power from the PV array connected to each DC link voltage level. The Maximum Power Point Tracking algorithm is solved by Perturb and Observer method.It has high performance with low Total Harmonic Distortion and reduced by this control strategy. The proposed system has verified and THD is obtained by using MATLAB/simulink.The result is compared with the hardware prototype working model.


Author(s):  
Adel Haddouche ◽  
Mohammed Kara ◽  
Lotfi Farah

<p><span lang="EN-US">This paper presents a fuzzy logic controller for maximum power point tracking (MPPT) in photovoltaic system with reduced number of rules instead of conventional 25 rules to make the system lighter which will improve the tracking speed and reduce the static error, engendering a global performance improvements. in this work the proposed system use the power variation and current variation as inputs to simplify the calculation, the introduced controller is connected to a conventional grid and simulated with MATLAB/SIMULINK. The simulation results shows a promising indication to adopt the introduced controller as an a good alternative  to traditional MPPT system for further practical applications</span></p>


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shahrooz Hajighorbani ◽  
M. A. M. Radzi ◽  
M. Z. A. Ab Kadir ◽  
S. Shafie ◽  
Razieh Khanaki ◽  
...  

Photovoltaic system (PV) has nonlinear characteristics which are affected by changing the climate conditions and, in these characteristics, there is an operating point in which the maximum available power of PV is obtained. Fuzzy logic controller (FLC) is the artificial intelligent based maximum power point tracking (MPPT) method for obtaining the maximum power point (MPP). In this method, defining the logical rule and specific range of membership function has the significant effect on achieving the best and desirable results. This paper presents a detailed comparative survey of five general and main fuzzy logic subsets used for FLC technique in DC-DC boost converter. These rules and specific range of membership functions are implemented in the same system and the best fuzzy subset is obtained from the simulation results carried out in MATLAB. The proposed subset is able to track the maximum power point in minimum time with small oscillations and the highest system efficiency (95.7%). This investigation provides valuable results for all users who want to implement the reliable fuzzy logic subset for their works.


Sign in / Sign up

Export Citation Format

Share Document