scholarly journals Exergy Analysis of Adiabatic Liquid Air Energy Storage (A-LAES) System Based on Linde–Hampson Cycle

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 945
Author(s):  
Lukasz Szablowski ◽  
Piotr Krawczyk ◽  
Marcin Wolowicz

Efficiently storing energy on a large scale poses a major challenge and one that is growing in importance with the increasing share of renewables in the energy mix. The only options at present are either pumped hydro or compressed air storage. One novel alternative is to store energy using liquid air, but this technology is not yet fully mature and requires substantial research and development, including in-depth energy and exergy analysis. This paper presents an exergy analysis of the Adiabatic Liquid Air Energy Storage (A-LAES) system based on the Linde–Hampson cycle. The exergy analysis was carried out for four cases with different parameters, in particular the discharge pressure of the air at the inlet of the turbine (20, 40, 100, 150 bar). The results of the analysis show that the greatest exergy destruction can be observed in the air evaporator and in the Joule–Thompson valve. In the case of air evaporator, the destruction of exergy is greatest for the lowest discharge pressure, i.e., 20 bar, and reaches over 118 MWh/cycle. It decreases with increasing discharge pressure, down to approximately 24 MWh/cycle for 150 bar, which is caused by a decrease in the heat of vaporization of air. In the case of Joule–Thompson valve, the changes are reversed. The highest destruction of exergy is observed for the highest considered discharge pressure (150 bar) and amounts to over 183 MWh/cycle. It decreases as pressure is lowered to 57.5 MWh/cycle for 20 bar. The other components of the system do not show exergy destruction greater than approximately 50 MWh/cycle for all considered pressures. Specific liquefaction work of the system ranged from 0.189 kWh/kgLA to 0.295 kWh/kgLA and the efficiency from 44.61% to 55.18%.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Youssef Mazloum ◽  
Haytham Sayah ◽  
Maroun Nemer

Abstract The balance between supply and demand for electricity is mainly disrupted by the growing contribution of renewable energy sources to the electrical grid since these sources are intermittent by nature. Therefore, the energy storage systems, mainly those of considerable size, become essential to restore the electricity balance. The compressed air energy storage (CAES) system is one of the mature technologies used to store electricity on a large scale. Therefore, this article discusses the energy and exergy analysis of different configurations of a constant-pressure CAES system to improve its overall efficiency and energy density. The exergy efficiency of our basic adiabatic configuration using water as thermal storage medium is 56.4% and the energy density is 12.17 kWh/m3. The results show that the CAES system using a packed bed of quartzite rock as thermal storage medium has the best efficiency (67.2%) and energy density (17 kWh/m3) among adiabatic systems. The diabatic CAES systems could have a net efficiency up to 70.1% and an energy density up to 31.95 kWh/m3 by using combustion chambers. Finally, the waste heat recovery from other installations such as a gas turbine power plant has the potential to improve the energy density to 20.53 kWh/m3 without using fossil fuel sources.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Vikram C. Patil ◽  
Paul I. Ro

Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES) can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.


Energy ◽  
2017 ◽  
Vol 138 ◽  
pp. 12-18 ◽  
Author(s):  
Lukasz Szablowski ◽  
Piotr Krawczyk ◽  
Krzysztof Badyda ◽  
Sotirios Karellas ◽  
Emmanuel Kakaras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document