scholarly journals Analysis of the Influence of the Insulation Parameters of Medium Voltage Electrical Networks and of the Petersen Coil on the Single-Phase-to-Ground Fault Current

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1330
Author(s):  
Dumitru Toader ◽  
Marian Greconici ◽  
Daniela Vesa ◽  
Maria Vintan ◽  
Claudiu Solea

Settings of protection are essential to ensure the sensitivity and selectivity needed to detect defects. Making the correct settings requires the calculation of the fault currents with as little error as possible. Fault currents are influenced by the parameters of the electrical networks, including the state of the insulation and the Petersen coil, which changes during their operation electrical networks. This paper analyzes how the insulation parameters of medium voltage power lines, the parameters of the Petersen coil used to treat the neutral of the medium voltage electrical network and the value of the resistance at the fault location influence the fault current in the case of a single-phase fault. The large number of single-phase faults that occur in medium voltage electrical networks justifies this analysis. The symmetrical components method was used to calculate the fault current. The results obtained by calculation were verified experimentally by causing a single-phase-to-ground fault in a real medium voltage network. The paper presents the situations in which the analytical calculation of the single-phase-to-ground fault current can lead to inadmissibly large errors, even over 50%, but also the situations in which the errors fall below 3%.

2020 ◽  
Vol 216 ◽  
pp. 01033
Author(s):  
A.L. Kulikov ◽  
V.Ju Osokin ◽  
D.I. Bezdushniy ◽  
A.A. Loskutov

It is difficult to develop precise algorithms for determining fault locations for single-phase and double earth faults due to the features of emergency modes in medium voltage networks of 6-35 kV. The arbitrary configuration of electrical networks complicates the development of universal fault locations algorithms and, as a rule, technical solutions are limited by the need to use one-way measurements of emergency mode parameters. The article discusses new topology independent fault location algorithms that involve the use of the superposition method. The application of the proposed algorithms is justified by the results of simulation modeling and will allow implementation of calculating the distance to the fault in networks with isolated neutral with high accuracy.


2021 ◽  
pp. 38-44
Author(s):  
Aleksandr L. KULIKOV ◽  
◽  
Vladislav Yu. OSOKIN ◽  
Dmitriy I. BEZDUSHNYY ◽  
Anton A. LOSKUTOV ◽  
...  

Medium-voltage networks are characterized by a long length and high degree of wear. Isolation of a failed network section requires significant time expenditures, a circumstance that makes accurate and fast determination of the fault location a topical problem. In view of specific features of emergency modes in medium voltage networks, the development of precise algorithms for fault location in the case of single and double ground faults involves certain difficulties. The arbitrary configuration of electrical networks, specific neutral grounding conditions, and lack of the possibility to perform multilateral measurements of emergency parameters complicate the development of universal fault location algorithms. In addition, technical solutions are as a rule limited by the need of using one-sided measurements of emergency mode parameters. The considered algorithms for calculating the distance to the fault location involve the use of emergency and normal electric network mode parameters. The proposed algorithms are based on using the superposition method and do not depend on the electrical network topology; they make it possible to decrease the influence of the current distribution pattern in lines with branches, as well as the influence of the load operating conditions on the accuracy of calculating the distance to fault location. The application of the proposed algorithms is justified by the results of simulation and makes it possible to calculate the distance to the fault location in networks with insulated neutral with high accuracy.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3917 ◽  
Author(s):  
Yangang Shi ◽  
Tao Zheng ◽  
Chang Yang

Traveling wave (TW)-based fault-location methods have been used to determine single-phase-to-ground fault distance in power-distribution networks. The previous approaches detected the arrival time of the initial traveling wave via single ended or multi-terminal measurements. Regarding the multi-branch effect, this paper utilized the reflected waves to obtain multiple arriving times through single ended measurement. Potential fault sections were estimated by searching for the possible traveling wave propagation paths in accordance with the structure of the distribution network. This approach used the entire propagation of a traveling wave measured at a single end without any prerequisite of synchronization, which is a must in multi-terminal measurements. The uniqueness of the fault section was guaranteed by several independent single-ended measurements. Traveling waves obtained in a real 10 kV distribution network were used to determine the fault section, and the results demonstrate the significant effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document