ground displacement
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 83)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 188
Author(s):  
Saul A. Sanchez ◽  
Esfhan A. Kherani ◽  
Elvira Astafyeva ◽  
Eurico R. de Paula

Earthquakes are known to generate disturbances in the ionosphere. Such disturbances, referred to as co-seismic ionospheric disturbances, or ionoquakes, were previously reported for large earthquakes with magnitudes Mw≥ 6.6. This paper reports ionoquakes associated with the Ridgecrest earthquakes of magnitude (Mw=6.4), that occurred on 4 July 2019 in California, USA. The ionoquakes manifested in total electron content (TEC) in the form of traveling ionospheric disturbances (TIDs) within 1 h from the mainshock onset. These seismic-origin TIDs have unique wave characteristics that distinguish them from TIDs of non-seismic origin arising from a moderate geomagnetic activity on the same day. Moreover, in the space-time domain of the detection of seismic-origin TIDs, TIDs are absent on the day before and day after the earthquake day. Their spectral characteristics relate them to the Earth’s normal modes and atmospheric resonance modes. We found the ground velocity associated with the mainshock, rather than the ground displacement, satisfies the threshold criteria for detectable ionoquakes in TEC measurements. Numerical simulation suggested that the coupled seismo–atmosphere–ionosphere (SAI) dynamics energized by the atmospheric waves are responsible for the generation of ionoquakes. This study’s findings demonstrate the potential of using TEC measurement to detect the ionospheric counterparts of moderate earthquakes.


2021 ◽  
Author(s):  
◽  
Pegah Faegh-Lashgary

<p>The last seven years have seen southern New Zealand a ected by several large and damaging earthquakes: the moment magnitude (MW) 7.8 Dusky Sound earthquake on 15 July 2009, the MW 7.1 Dar eld (Canterbury) earthquake on 4 September 2010, and most notably the MW 6.2 Christchurch earthquake on 22 February 2011 and the protracted aftershock sequence. In this thesis, we address the postseismic displacement produced by these earthquakes using methods of satellite-based geodetic measurement, known as Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS), and computational modelling.  We observe several ground displacement features in the Canterbury and Fiordland regions during three periods: 1) Following the Dusky Sound earthquake; 2) Following the Dar eld earthquake and prior to the Christchurch earthquake; and 3) Following the Christchurch earthquake until February 2015.  The ground displacement associated with postseismic motion following the Dusky Sound earthquake has been measured by continuous and campaign GPS data acquired in August 2009, in conjunction with Di erential Interferometric Synthetic Aperture Radar (DInSAR) observations. We use an afterslip model, estimated by temporal inversion of geodetic data, with combined viscoelastic rebound model to account for the observed spatio-temporal patterns of displacement. The two postseismic processes together induce a signi cant displacement corresponding to principal extensional and contractual strain rates of the order of 10⁻⁷ and 10⁻⁸ yr⁻¹ respectively, across most of the southern South Island.  We also analyse observed postseismic displacement following the Dusky Sound earthquake using a new inversion approach in order to describe afterslip in an elasticviscoelastic medium. We develop a mathematical framework, namely the "Iterative Decoupling of Afterslip and Viscoelastic rebound (IDAV)" method, with which to invert temporally dense and spatially sparse geodetic observations. We examine the IDAV method using both numerical and analytical simulations of Green's functions.  For the post-Dar eld time interval, postseismic signals are measured within approximately one month of the mainshock. The dataset used for the post-Dar eld displacement spans the region surrounding previously unrecognised faults that ruptured during the mainshock. Poroelastic rebound in a multi-layered half-space and dilatancy recovery at shallow depths provide a satisfactory t with the observations.  For the post-Christchurch interval, campaign GPS data acquired in February 2012 to February 2015 in four successive epochs and 66 TerraSAR-X (TSX) SAR acquisitions in descending orbits between March 2011 and May 2014 reveal approximately three years of postseismic displacement. We detect movement away from the satellite of ~ 3 mm/yr in Christchurch and a gradient of displacement of ~ 4 mm/yr across a lineament extending from the westernmost end of the Western Christchurch Fault towards the eastern end of the Greendale East Fault. The postseismic signals following the Christchurch earthquake are mainly accounted for by afterslip models on the subsurface lineament and nearby faults.</p>


2021 ◽  
Author(s):  
◽  
Pegah Faegh-Lashgary

<p>The last seven years have seen southern New Zealand a ected by several large and damaging earthquakes: the moment magnitude (MW) 7.8 Dusky Sound earthquake on 15 July 2009, the MW 7.1 Dar eld (Canterbury) earthquake on 4 September 2010, and most notably the MW 6.2 Christchurch earthquake on 22 February 2011 and the protracted aftershock sequence. In this thesis, we address the postseismic displacement produced by these earthquakes using methods of satellite-based geodetic measurement, known as Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS), and computational modelling.  We observe several ground displacement features in the Canterbury and Fiordland regions during three periods: 1) Following the Dusky Sound earthquake; 2) Following the Dar eld earthquake and prior to the Christchurch earthquake; and 3) Following the Christchurch earthquake until February 2015.  The ground displacement associated with postseismic motion following the Dusky Sound earthquake has been measured by continuous and campaign GPS data acquired in August 2009, in conjunction with Di erential Interferometric Synthetic Aperture Radar (DInSAR) observations. We use an afterslip model, estimated by temporal inversion of geodetic data, with combined viscoelastic rebound model to account for the observed spatio-temporal patterns of displacement. The two postseismic processes together induce a signi cant displacement corresponding to principal extensional and contractual strain rates of the order of 10⁻⁷ and 10⁻⁸ yr⁻¹ respectively, across most of the southern South Island.  We also analyse observed postseismic displacement following the Dusky Sound earthquake using a new inversion approach in order to describe afterslip in an elasticviscoelastic medium. We develop a mathematical framework, namely the "Iterative Decoupling of Afterslip and Viscoelastic rebound (IDAV)" method, with which to invert temporally dense and spatially sparse geodetic observations. We examine the IDAV method using both numerical and analytical simulations of Green's functions.  For the post-Dar eld time interval, postseismic signals are measured within approximately one month of the mainshock. The dataset used for the post-Dar eld displacement spans the region surrounding previously unrecognised faults that ruptured during the mainshock. Poroelastic rebound in a multi-layered half-space and dilatancy recovery at shallow depths provide a satisfactory t with the observations.  For the post-Christchurch interval, campaign GPS data acquired in February 2012 to February 2015 in four successive epochs and 66 TerraSAR-X (TSX) SAR acquisitions in descending orbits between March 2011 and May 2014 reveal approximately three years of postseismic displacement. We detect movement away from the satellite of ~ 3 mm/yr in Christchurch and a gradient of displacement of ~ 4 mm/yr across a lineament extending from the westernmost end of the Western Christchurch Fault towards the eastern end of the Greendale East Fault. The postseismic signals following the Christchurch earthquake are mainly accounted for by afterslip models on the subsurface lineament and nearby faults.</p>


Author(s):  
Richard Brune ◽  
John G. Anderson ◽  
James N. Brune

Abstract This study investigates the directions of structural failures and toppling near Point Reyes Station during the 1906 San Francisco earthquake (Mw 7.9). We examined archives of the Jack Mason Museum of West Marin History and other historical sources for photographs and other evidence relevant to the dynamics of the 1906 rupture in this area. Using historical maps, site investigations, and previously unpublished photographs, we determined the precise locations and orientations of several structures, including a correction to the orientation of the train that was the subject of previous studies. Based on the photographic evidence and written accounts, we estimate the direction of toppling or collapse of each structure. Nearly all objects found were thrown in a direction approximately parallel to the right-lateral San Andreas fault, and in the same direction as the static ground displacement. This suggests that fault-parallel accelerations may have been stronger than fault-normal accelerations, and that the slip on the fault may have begun slowly and stopped more suddenly.


2021 ◽  
Vol 13 (21) ◽  
pp. 4253
Author(s):  
Lisa Beccaro ◽  
Cristiano Tolomei ◽  
Roberto Gianardi ◽  
Vincenzo Sepe ◽  
Marina Bisson ◽  
...  

Volcanic islands are often affected by ground displacement such as slope instability, due to their peculiar morphology. This is the case of Ischia Island (Naples, Italy) dominated by the Mt. Epomeo (787 m a.s.l.), a volcano-tectonic horst located in the central portion of the island. This study aims to follow a long temporal evolution of ground deformations on the island through the interferometric analysis of satellite SAR data. Different datasets, acquired during Envisat, COSMO-SkyMed and Sentinel-1 satellite missions, are for the first time processed in order to obtain the island ground deformations during a time interval spanning 17 years, from November 2002 to December 2019. In detail, the multitemporal differential interferometry technique, named small baseline subset, is applied to produce the ground displacement maps and the associated displacement time series. The results, validated through the analysis and the comparison with a set of GPS measurements, show that the northwestern side of Mt. Epomeo is the sector of the island characterized by the highest subsidence movements (maximum vertical displacement of 218 mm) with velocities ranging from 10 to 20 mm/yr. Finally, the displacement time series allow us to correlate the measured ground deformations with the seismic swarm started with the Mw 3.9 earthquake that occurred on 21 August 2017. Such correlations highlight an acceleration of the ground, following the mainshock, characterized by a subsidence displacement rate of 0.12 mm/day that returned to pre-earthquake levels (0.03 mm/day) after 6 months from the event.


2021 ◽  
Vol 27 (67) ◽  
pp. 1207-1212
Author(s):  
Ayaka SHIRAISHI ◽  
Kentaro DAN ◽  
Taku NAKAJIMA ◽  
Yoshiyuki FUKUMOTO ◽  
Kazumasa OSUMI ◽  
...  

2021 ◽  
Vol 66 (3) ◽  
pp. 180-194
Author(s):  
Khac Dang Vu ◽  
Trinh Phan Trong ◽  
Vinh Dinh Xuan

Land subsidence becomes a trouble for the different regions of the Mekong delta, where many places will be severely affected by sea-level rise in the context of climate change. Land subsidence could amplify this situation by inducing interactive hazards such as submerged land and saline intrusion, etc. Mapping the spatial distribution of land subsidence become a crucial task, and the Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) approach was applied to 120 Sentinel-1A images within three scenes, captured from October 2016 to October 2020 with the interval of 36 days between two consecutive images. This approach allows mapping ground displacement by continuously extracting deformation signals and estimating the position of targets that persistently scatter radar beams. The average velocity map shows that eight main subsidence areas in the Mekong delta have been affected in recent years with the maximum velocity of -39.61 mm year-1 and the cumulative displacement ranging from 60 to 100 mm in the Line Of Sight (LOS) direction over four years. The validation using 40 Sentinel-1B images, captured in identical periods indicates a consistent result in comparison with the one issued from Sentinel-1A. These pieces of knowledge are essential for improving both citizen’s life and reducing the impact of land subsidence on the natural environment.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Morteza Abbasnejadfard ◽  
Morteza Bastami ◽  
Afshin Fallah

AbstractThe results of seismic risk assessment of spatially distributed infrastructure systems are significantly influenced by spatial correlation of earthquake intensity measures (IM). The assumption of isotropy is a basis for most of the existing correlation models of earthquake IMs. In this study, the isotropy assumption of intra-event residuals of peak ground velocity (PGV) and peak ground displacement (PGD) is investigated by implementing a nonparametric statistical test. Using recorded IMs of 9 earthquakes, it is concluded that there is not sufficient evidence to support the assumption of isotropy in general, and the set of intra-event residuals of PGV and PGD should be considered as the realization of anisotropic random fields. Investigations show that the anisotropy properties of intra-event residuals of PGV and PGD are related to anisotropy properties of local soil characteristics indicated by average shear wave velocity of soil profile from the 30 m depth to the surface (Vs30). Finally, predictive models are proposed based on obtained results in order to simulate the correlated univariate random fields of PGV and PGD considering anisotropy.


2021 ◽  
Vol 111 (5) ◽  
pp. 2393-2407 ◽  
Author(s):  
Dara E. Goldberg ◽  
Diego Melgar ◽  
Gavin P. Hayes ◽  
Brendan W. Crowell ◽  
Valerie J. Sahakian

ABSTRACT We present an updated ground-motion model (GMM) for Mw 6–9 earthquakes using Global Navigation Satellite Systems (GNSS) observations of the peak ground displacement (PGD). Earthquake GMMs inform a range of Earth science and engineering applications, including source characterization, seismic hazard evaluations, loss estimates, and seismic design standards. A typical GMM is characterized by simplified metrics describing the earthquake source (magnitude), observation distance, and site terms. Most often, GMMs are derived from broadband seismometer and accelerometer observations, yet during strong shaking, these traditional seismic instruments are affected by baseline offsets, leading to inaccurate recordings of low-frequency ground motions such as displacement. The incorporation of geodetic data sources, particularly for characterizing the unsaturated ground displacement of large-magnitude events, has proven valuable as a complement to traditional seismic approaches and led to the development of an initial point-source GMM based on PGD estimated from high-rate GNSS data. Here, we improve the existing GMM to more effectively account for fault finiteness, slip heterogeneity, and observation distance. We evaluate the limitations of the currently available GNSS earthquake data set to calibrate the GMM. In particular, the observed earthquake data set is lacking in observations within 100 km of large-magnitude events (Mw&gt;8), inhibiting evaluation of fault dimensions for earthquakes too large to be represented as point sources in the near field. To that end, we separately consider previously validated synthetic GNSS waveforms within 10–1000 km of Mw 7.8–9.3 Cascadia subduction zone scenario ruptures. The synthetic data highlight the importance of fault distance rather than point-source metrics and improve our preparedness for large-magnitude earthquakes with spatiotemporal qualities unlike those in our existing data set.


Sign in / Sign up

Export Citation Format

Share Document