scholarly journals Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5544
Author(s):  
Min-Hwi Kim ◽  
Dong-Won Lee ◽  
Deuk-Won Kim ◽  
Young-Sub An ◽  
Jae-Ho Yun

Due to the wide-spread use of photovoltaic (PV) systems, interest regarding economic benefit and energy-sharing from surplus electricity has been raised. In this study, decentralized thermal and electric convergence energy prosumers for an energy-sharing community are proposed. For the convergence energy system, a simultaneous heating and cooling heat pump (SHCHP) system integrated with a thermal network is proposed, and the energy performance and operating energy savings of the proposed system were investigated. A smart village located in the Busan Eco Delta Smart City was selected as a case study for the simulation analysis. Experimental data of the heat pump system were used to analyze the SHCHP. The analysis results showed that the proposed system could provide over 53% and 86% of the load cover and supply cover factors, respectively. The proposed system can earn economic benefits, such as energy trading from the surplus electricity of PV systems and thermal energy produced by an SHCHP, more than 30.5 times those of conventional air-source heat pump systems. These benefits mainly originate that a conventional system can trade the surplus electricity from a PV system but the proposed system can trade produced thermal energy from SHCHPs and the surplus electricity from PV systems.

Author(s):  
Jeremy Spitzenberger ◽  
Pengtao Wang ◽  
Laith Ismael ◽  
Hongbin Ma ◽  
Ahmad Abuheiba ◽  
...  

Abstract Ejector driven systems have the ability to operate at high efficiencies, utilizing recycled thermal energy as a power source. For a typical ejector heat pump system, the increase of the condenser temperature reduces the coefficient of performance (COP). In addition, if the condenser temperature is higher than the critical temperature, the ejector may not function. In this situation, the condenser temperature must be reduced, and an additional heater will be utilized to heat the production water from the condenser temperature to the desired temperature. In this investigation, a single-stage gas-fired ejector heat pump (EHP) is investigated and thermodynamically modeled in order to optimize the system COP for the purpose of heating water by utilizing the thermal energy from the ambient air. The effects of the high-temperature evaporator (HTE) and low-temperature evaporator (LTE) temperatures on the ejector critical back pressure and the EHP system performance are examined for a HTE temperature range of 120-180 °C and LTE temperatures of 15.5, 17.5, and 19.5 °C. Results show that an optimized COP of the EHP system exists which depends on HTE and LTE temperatures, primary nozzle throat diameters. In addition, it is found that the EHP COP is independent of the ejector COP. From this investigation a maximum EHP COP of 1.31 is able to be achieved for a HTE temperature of 160 °C and a LTE temperature of 19.5 °C with a total heating capacity of 15.98 kW.


2021 ◽  
Author(s):  
Toktam Saeid

In October 2009, Team North competed in the US DOE 2009 Solar Decathlon competition. Team North's mission was to design and deliver North House, an energy efficient solar-powered home while training Canada's next generation of leaders in sustainable design. In North House, the PV system on the roof was the primary energy generation, complimented by a custom PV cladding system on the south, east and west facades. A solar assisted heat pump system, including a three-tank heat transfer and storage system, the horizontally mounted evacuated-tube solar thermal collectors on the roof and a variable capacity heat pump met the hot water and space heating demands. A second variable capacity heat pump was utilized for space cooling. The solar thermal system was studied using TRNSYS simulation. For the initial assessments the simulations were run for Baltimore. Then, the analyses were extended to different cities across Canada. In all scenarios the same house was linked to the system. The minimum annual solar fraction of the different cities was 64% and it rose up to 81%. Finally, the data measured during the competition were analyzed and compared with the data resulting from the simulation. According to competition measures, during the 10 days of competition in Washington DC, the PV system generated 271.6kWh of electricity and the solar thermal system produced 91.7kWh while the house consumption was 294.1kWh. As a result, North House was evidently a net-positive house.


2020 ◽  
Vol 2020.57 (0) ◽  
pp. Q031
Author(s):  
Fumikazu IWABUCHI ◽  
Takehide OKAMOTO ◽  
Masakazu OKAZAKI ◽  
Hitoshi TSUCHIDA

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yasser Abbasi ◽  
Ehsan Baniasadi ◽  
Hossein Ahmadikia

This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2emissions by almost 70 tons per year.


Sign in / Sign up

Export Citation Format

Share Document