scholarly journals High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6041
Author(s):  
Ruyun Cheng ◽  
Li Yao ◽  
Xinyang Yan ◽  
Bingda Zhang ◽  
Zhao Jin

With the expansion of system scale and the reduction in simulation step size, the design of a power system real-time simulation platform faces many difficulties. The interactive operation of real-time simulation presents the characteristics of phased and centralized. This paper proposes selecting the appropriate simulation method for each sub-network according to the system operation requirements, and the sub-network simulation method can be changed with the change in system operation requirements in the simulation process. In order to change the sub-network simulation method in the simulation process, a high flexibility hybrid architecture real-time simulation platform based on FPGA was designed. The main body of the architecture runs in the high control mode of instruction flow and uses instruction flexibility to realize the requirement of changing methods. The algorithm modularity architecture is used as an auxiliary architecture to reduce the instruction cost and increase the computing power. Finally, the hybrid architecture real-time simulation platform was implemented in the Xilinx VC709 board (Xilinx corporation, San Jose, CA, USA), and the verification results show that under the same system scale, the hybrid architecture simulation platform combined with simulation method changing realizes shorter simulation step and complex interactive operation.

SIMULATION ◽  
2021 ◽  
pp. 003754972199601
Author(s):  
Jinchao Chen ◽  
Keke Chen ◽  
Chenglie Du ◽  
Yifan Liu

The ARINC 653 operation system is currently widely adopted in the avionics industry, and has become the mainstream architecture in avionics applications because of its strong agility and reliability. Although ARINC 653 can efficiently reduce the weight and energy consumption, it results in a serious development and verification problem for avionics systems. As ARINC 653 is non-open source software and lacks effective support for software testing and debugging, it is of great significance to build a real-time simulation platform for ARINC 653 on general-purpose operating systems, improving the efficiency and effectiveness of system development and implementation. In this paper, a virtual ARINC 653 platform is designed and realized by using real-time simulation technology. The proposed platform is composed of partition management, communication management, and health monitoring management, provides the same operation interfaces as the ARINC 653 system, and allows dynamic debugging of avionics applications without requiring the actual presence of real devices. Experimental results show that the platform not only simulates the functionalities of ARINC 653, but also meets the real-time requirements of avionics applications.


2018 ◽  
Vol 153 ◽  
pp. 82-94 ◽  
Author(s):  
Jicheng Ma ◽  
Juntao Chang ◽  
Junlong Zhang ◽  
Wen Bao ◽  
Daren Yu

Sign in / Sign up

Export Citation Format

Share Document