scholarly journals Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6260
Author(s):  
Mia Ala-Juusela ◽  
Hassam ur Rehman ◽  
Mari Hukkalainen ◽  
Francesco Reda

Buildings account for 36% of the final energy demand and 39% of CO2 emissions worldwide. Targets for increasing the energy efficiency of buildings and reducing building related emissions is an important part of the energy policy to reach the Paris agreement within the United Nations Framework Convention on Climate Change. While nearly zero energy buildings are the new norm in the EU, the research is advancing towards positive energy buildings, which contribute to the surrounding community by providing emission-free energy. This paper suggests a definition for positive energy building and presents the framework, elements, and challenges of the concept. In a positive energy building, the annual renewable energy production in the building site exceeds the energy demand of the building. This increases two-way interactions with energy grids, requiring a broader approach compared to zero energy buildings. The role of energy flexibility grows when the share of fluctuating renewable energy increases. The presented framework is designed with balancing two important perspectives: technical and user-centric approaches. It can be accommodated to different operational conditions, regulations, and climates. Potential challenges and opportunities are also discussed, such as the present issues in the building’s balancing boundary, electric vehicle integration, and smart readiness indicators.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6026
Author(s):  
Sergio Gómez Melgar ◽  
Antonio Sánchez Cordero ◽  
Marta Videras Rodríguez ◽  
José Manuel Andújar Márquez

The construction sector is a great contributor to global warming both in new and existing buildings. Minimum energy buildings (MEBs) demand as little energy as possible, with an optimized architectural design, which includes passive solutions. In addition, these buildings consume as low energy as possible introducing efficient facilities. Finally, they produce renewable energy on-site to become zero energy buildings (ZEBs) or even plus zero energy buildings (+ZEB). In this paper, a deep analysis of the energy use and renewable energy production of a social dwelling was carried out based on data measurements. Unfortunately, in residential buildings, most renewable energy production occurs at a different time than energy demand. Furthermore, energy storage batteries for these facilities are expensive and require significant maintenance. The present research proposes a strategy, which involves rescheduling energy demand by changing the habits of the occupants in terms of domestic hot water (DHW) consumption, cooking, and washing. Rescheduling these three electric circuits increases the usability of the renewable energy produced on-site, reducing the misused energy from 52.84% to 25.14%, as well as decreasing electricity costs by 58.46%.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5046
Author(s):  
Gokula Manikandan Senthil Kumar ◽  
Sunliang Cao

A positive energy system that produces more renewable energy than its demand while ensuring appropriate comfort levels is an excellent path towards increasing the portion of renewable energy, reducing carbon emission, and increasing the energy system’s overall performance. In particular, it has been believed as step forward towards zero energy systems. Recent progress in positive energy building and community levels is gaining interest among different stakeholders. However, an inadequate understanding of the positive energy system is widely noticed in many projects, and a shortage of standard details on the positive energy system still prevails in the research community. Therefore, a state-of-the-art review of positive energy building and community is conducted in this paper. Firstly, this paper begins with the definitions and concepts of positive energy buildings and communities. Secondly, it comprehensively describes the energy supplies, demands, indicators, storage, energy management, roles of stakeholders, and bottlenecks of positive energy systems. Thirdly, the main differences between positive energy buildings and communities are summarized. Fourthly, the impact of smart energy grids and new energy vehicles on the positive energy buildings and communities is derived. As a conclusion, this paper shows that even though all the energy-efficient buildings such as passive buildings, nearly zero energy buildings, zero energy buildings, positive energy buildings look like an up-trending scale of renewable penetration, considerable differences are visible among all, and the same thing applies to the community level. Furthermore, considerable differences exist when comparing between positive buildings and communities regarding both the technical and economic perspectives.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3252 ◽  
Author(s):  
Xiaolong Xu ◽  
Guohui Feng ◽  
Dandan Chi ◽  
Ming Liu ◽  
Baoyue Dou

Optimizing key parameters with energy consumption as the control target can minimize the heating and cooling needs of buildings. In this paper we focus on the optimization of performance parameters design and the prediction of energy consumption for nearly Zero Energy Buildings (nZEB). The optimal combination of various performance parameters and the Energy Saving Ratio (ESR)are studied by using a large volume of simulation data. Artificial neural networks (ANNs) are applied for the prediction of annual electrical energy consumption in a nearly Zero Energy Building designs located in Shenyang (China). The data of the energy demand for our test is obtained by using building simulation techniques. The results demonstrate that the heating energy demand for our test nearly Zero Energy Building is 17.42 KW·h/(m2·a). The Energy Saving Ratio of window-to-wall ratios optimization is the most obvious, followed by thermal performance parameters of the window, and finally the insulation thickness. The maximum relative error of building energy consumption prediction is 6.46% when using the artificial neural network model to predict energy consumption. The establishment of this prediction method enables architects to easily and accurately obtain the energy consumption of buildings during the design phase.


Author(s):  
Elisa Peñalvo-López ◽  
Javier Cárcel-Carrasco ◽  
Manuel Valcuende-Paya ◽  
María Carmen Carnero-Moya

The construction segment is an important economic sector in Europe, representing 9% of European gross domestic product (GDP) and providing approximately 18 million direct jobs. Construction activities that include renovation work and energy retrofits add almost twice as much value as the construction of new buildings, and small and medium-sized enterprises (SMEs) contribute more than 70% of the value added in the EU building sector. Furthermore, European legislation obliges member states to establish minimum energy efficiency requirements for buildings to achieve optimum levels of costs versus energy demand reduction. These requirements are reviewed every five years and represent categories of buildings based on their energy levels (demand and generation). This chapter analyzes the legislation associated to nearly zero energy buildings (nZEB) in Spain in order to identify the factors that will leverage their massive implementation.


Author(s):  
Elisa Peñalvo-López ◽  
Javier Cárcel-Carrasco ◽  
Manuel Valcuende-Paya ◽  
María Carmen Carnero-Moya

The construction segment is an important economic sector in Europe, representing 9% of European gross domestic product (GDP) and providing approximately 18 million direct jobs. Construction activities that include renovation work and energy retrofits add almost twice as much value as the construction of new buildings, and small and medium-sized enterprises (SMEs) contribute more than 70% of the value added in the EU building sector. Furthermore, European legislation obliges member states to establish minimum energy efficiency requirements for buildings to achieve optimum levels of costs versus energy demand reduction. These requirements are reviewed every five years and represent categories of buildings based on their energy levels (demand and generation). This chapter analyzes the legislation associated to nearly zero energy buildings (nZEB) in Spain in order to identify the factors that will leverage their massive implementation.


2020 ◽  
Vol 52 ◽  
pp. 101843 ◽  
Author(s):  
Emeli Lalesca Aparecida da Guarda ◽  
Renata Mansuelo Alves Domingos ◽  
Stefany Hoffmann Martins Jorge ◽  
Luciane Cleonice Durante ◽  
João Carlos Machado Sanches ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document