scholarly journals Comparison of Long-Term Bioenergy with Carbon Capture and Storage to Reference Power Generation Technologies Using CO2 Avoidance Cost in the U.S.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7026
Author(s):  
Abishek Kasturi ◽  
Sotira Yiacoumi ◽  
Matthew Langholtz ◽  
Joanna McFarlane ◽  
Ingrid Busch ◽  
...  

Bioenergy with carbon capture and storage (BECCS) can sequester atmospheric CO2, while producing electricity. The CO2 avoidance cost (CAC) is used to calculate the marginal cost of avoided CO2 emissions for BECCS as compared to other established energy technologies. A comparative analysis using four different reference-case power plants for CAC calculations is performed here to evaluate the CO2 avoidance cost of BECCS implementation. Results from this work demonstrate that BECCS can generate electricity at costs competitive with other neutral emissions technologies, while simultaneously removing CO2 from the atmosphere. Approximately 73% of current coal power plants are approaching retirement by the year 2035 in the U.S. After considering CO2 sequestered from the atmosphere and coal power plant CO2 emissions displaced by BECCS, CO2 emissions can be reduced by 1.4 billion tonnes per year in the U.S. alone at a cost of $88 to $116 per tonne of CO2 removed from the atmosphere, for 10% to 90% of available biomass used, respectively. CAC calculations in this paper indicate that BECCS can help the U.S. and other countries transition to a decarbonized electricity grid, as simulations presented in this paper predict that BECCS power plants operate at lower CACs than coal plants with CCS.

Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 262
Author(s):  
Mitavachan Hiremath ◽  
Peter Viebahn ◽  
Sascha Samadi

Roadmaps for India’s energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges—such as a lack of technical potential assessments and necessary support infrastructure, and high costs—but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.


2017 ◽  
Vol 157 ◽  
pp. 10-21 ◽  
Author(s):  
Letitia Petrescu ◽  
Davide Bonalumi ◽  
Gianluca Valenti ◽  
Ana-Maria Cormos ◽  
Calin-Cristian Cormos

Sign in / Sign up

Export Citation Format

Share Document