scholarly journals Implementation of a Small Type DC Microgrid Based on Fuzzy Control and Dynamic Programming

Energies ◽  
2016 ◽  
Vol 9 (10) ◽  
pp. 781 ◽  
Author(s):  
Chin-Hsing Cheng
2014 ◽  
Vol 556-562 ◽  
pp. 1472-1475 ◽  
Author(s):  
Bing Dong ◽  
Yan Tao Tian ◽  
Chang Jiu Zhou

This thesis puts forward one optimal adaptive fuzzy control method based on the pure electric vehicle energy management system of the fuzzy control which has been founded already. By adding an optimizing researching model based on the conventional fuzzy control strategy, the thesis can pick up the valuable control rules based on the dynamic programming theory and also can adjust the parameter of the fuzzy controller automatically according to the system operating. These can make the sum of the energy loss reduce to the min. The experiment points out that this method makes the vehicle possess good economic performance in the same driving cycle.


2020 ◽  
Vol 14 (14) ◽  
pp. 2649-2656
Author(s):  
Zeyan Lv ◽  
Yong Zhang ◽  
Miao Yu ◽  
Yanghong Xia ◽  
Wei Wei

Author(s):  
Yinping An ◽  
Xiangping Meng ◽  
Hui Wang ◽  
Qi Yao ◽  
Chunhui Liang
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Juan José Martínez ◽  
José Alfredo Padilla-Medina ◽  
Sergio Cano-Andrade ◽  
Agustín Sancen ◽  
Juan Prado ◽  
...  

This study presents the development and application of a fuzzy control system (FCS) for the control of the charge and discharge process for a bank of batteries connected to a DC microgrid (DC-MG). The DC-MG runs on a maximum power of 1 kW with a 190 V DC bus using two photovoltaic systems of 0.6 kW each, a 1 kW bidirectional DC-AC converter to interconnect the DC-MG with the grid, a bank of 115 Ah to 120 V lead-acid batteries, and a general management system used to define the operating status of the FCS. This FCS uses a multiplexed fuzzy controller, normalizing the controller’s inputs and outputs in each operating status. The design of the fuzzy controller is based on a Mamdani inference system with AND-type fuzzy rules. The input and output variables have two trapezoidal membership functions and three triangular membership functions. LabVIEW and the NI myRIO-1900 embedded design device were used to implement the FCS. Results show the stability of the DC bus of the microgrid when the bank of batteries is in the charging and discharging process, with the bus stabilized in a range of 190 V ± 5%, thus demonstrating short response times to perturbations considering the microgrid’s response dynamics.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-gang Wu ◽  
Dian-yu Zheng

This paper uses certain hub motor distributed electric vehicle driving system as the research object, using several control strategies, such as dynamic programming global optimization algorithm, fuzzy control, and torque equal distribution and realizing the distribution control of the distributed power of the electric drive system. The simulation results show that, under the NEDC road condition, using the dynamic programming algorithm to optimize the torque distribution, the energy consumption of the electric drive system is 8041 kJ, decreased by 4.77% compared to the average torque distribution control and decreased by 3.5% compared to the fuzzy control strategy. The power consumption of the electric vehicle is 20.25 kWh per 100 km, decreased by 1.01 kWh compared to the average torque distribution control strategy and decreased by 0.72 kWh compared to the fuzzy control strategy. Under the fixed working condition, the energy efficiency of power system can be improved effectively when the distributed dynamic system torque is optimized by the dynamic programming algorithm. Without considering the global optimization, the fuzzy control can effectively improve the energy efficiency of the power system compared to the torque average distribution strategy.


Sign in / Sign up

Export Citation Format

Share Document