scholarly journals Role of m6A in Embryonic Stem Cell Differentiation and in Gametogenesis

Epigenomes ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Lior Lasman ◽  
Jacob H Hanna ◽  
Noa Novershtern

The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.

2016 ◽  
Vol 215 (3) ◽  
pp. 345-355 ◽  
Author(s):  
Bryne Ulmschneider ◽  
Bree K. Grillo-Hill ◽  
Marimar Benitez ◽  
Dinara R. Azimova ◽  
Diane L. Barber ◽  
...  

Despite extensive knowledge about the transcriptional regulation of stem cell differentiation, less is known about the role of dynamic cytosolic cues. We report that an increase in intracellular pH (pHi) is necessary for the efficient differentiation of Drosophila adult follicle stem cells (FSCs) and mouse embryonic stem cells (mESCs). We show that pHi increases with differentiation from FSCs to prefollicle cells (pFCs) and follicle cells. Loss of the Drosophila Na+–H+ exchanger DNhe2 lowers pHi in differentiating cells, impairs pFC differentiation, disrupts germarium morphology, and decreases fecundity. In contrast, increasing pHi promotes excess pFC cell differentiation toward a polar/stalk cell fate through suppressing Hedgehog pathway activity. Increased pHi also occurs with mESC differentiation and, when prevented, attenuates spontaneous differentiation of naive cells, as determined by expression of microRNA clusters and stage-specific markers. Our findings reveal a previously unrecognized role of pHi dynamics for the differentiation of two distinct types of stem cell lineages, which opens new directions for understanding conserved regulatory mechanisms.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4202-4202
Author(s):  
Zheng Wang ◽  
Pramono Andri ◽  
Skokowa Julia ◽  
Welte Karl

Abstract Thrombopoetin (TPO) is a primary regulator of megakaryocyte and platelet production. However, studies in c-mpl-deficient mice and in congenital amegakaryocytic thrombocytopenia-patients with non-sense c-mpl mutation who develop pancytopenia during the first years of life suggest that TPO also play an important role on early hematopoesis. We demonstrated that TPO enhances FLK-1 (VEGF-receptor) expression on hemangioblasts during murine embryonic stem cell differentiation in embryoid body-liquid cultures (up to 73%). To extend our studies, we investigated the TPO signaling in FLK-1 positive cells. ES cells at different time point of differentiation showed that TPO enhances c-mpl-, BMP4-, Notch-, HOXB4-, HOXB9-, HOXA10-, Runx1-and CD133- mRNA expression. To investigate mesoderm formation, we also analyzed GATA-4 and T-brachyury mRNA level expression. Interestingly, we found that TPO alone did not increase GATA-4- and T-brachyury- mRNA expression, suggesting that TPO requires other cytokines to form the mesoderm. We also found that TPO could maintain VEGF-A mRNA expression level during differentiation of ES-cells. We hypothesize that VEGF expression together with c-mpl expression is required in hematopoetic differentiation of ES cell. This activity of Tpo was also observed during Rhesus monkey embryonic stem cell differentiation into hematopoetic cell. Only combinations of TPO and VEGF were capable of increasing CD34 positive hematopoietic progenitor cells (up to 8%), but TPO alone failed to induce high levels of CD34+ cell. In addition, analysis of gene expression during hemangioblast development demonstrated that TPO was capable of increasing the expression of VEGF receptors (FLK-1) and TPO receptors (c-mpl) in mice and primates. The in-vitro differentiation of mouse and rhesus monkey ES cells provides an opportunity to better understand the role of TPO in the early stage of hematopoietic development from ES cells to mature hematopoietic cells.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79867 ◽  
Author(s):  
Peng Li ◽  
Ying Chen ◽  
Kinglun Kingston Mak ◽  
Chun Kwok Wong ◽  
Chi Chiu Wang ◽  
...  

2011 ◽  
Vol 219 (2) ◽  
pp. 468-474 ◽  
Author(s):  
Shintaro Yamaguchi ◽  
Kenichi Yamahara ◽  
Koichiro Homma ◽  
Sayuri Suzuki ◽  
Shizuka Fujii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document