preimplantation embryo development
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 90)

H-INDEX

42
(FIVE YEARS 5)

Author(s):  
Xiaosu Miao ◽  
Wei Cui

Abstract Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development was evaluated by using both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in the mouse. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency, moreover, it can effectively alleviate LPS-induced embryonic damage by mitigating apoptosis via ROS−/caspase-3-dependent pathways and by suppressing pro-inflammatory cytokines via inhibition of NF-κB signaling pathway during preimplantation embryo development. In addition, skewed cell lineage specification in inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the non-toxicity of low doses of BER and its anti-apoptotic and anti-oxidative properties on embryonic cells during mammalian preimplantation development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zijing Zhang ◽  
Jiawei Xu ◽  
Shijie Lyu ◽  
Xiaoling Xin ◽  
Qiaoting Shi ◽  
...  

The early stages of mammalian embryonic development involve the participation and cooperation of numerous complex processes, including nutritional, genetic, and epigenetic mechanisms. However, in embryos cultured in vitro, a developmental block occurs that affects embryo development and the efficiency of culture. Although the block period is reported to involve the transcriptional repression of maternal genes and transcriptional activation of zygotic genes, how epigenetic factors regulate developmental block is still unclear. In this study, we systematically analyzed whole-genome methylation levels during five stages of sheep oocyte and preimplantation embryo development using single-cell level whole genome bisulphite sequencing (SC-WGBS) technology. Then, we examined several million CpG sites in individual cells at each evaluated developmental stage to identify the methylation changes that take place during the development of sheep preimplantation embryos. Our results showed that two strong waves of methylation changes occurred, namely, demethylation at the 8-cell to 16-cell stage and methylation at the 16-cell to 32-cell stage. Analysis of DNA methylation patterns in different functional regions revealed a stable hypermethylation status in 3′UTRs and gene bodies; however, significant differences were observed in intergenic and promoter regions at different developmental stages. Changes in methylation at different stages of preimplantation embryo development were also compared to investigate the molecular mechanisms involved in sheep embryo development at the methylation level. In conclusion, we report a detailed analysis of the DNA methylation dynamics during the development of sheep preimplantation embryos. Our results provide an explanation for the complex regulatory mechanisms underlying the embryo developmental block based on changes in DNA methylation levels.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260123
Author(s):  
Edgar Joel Soto-Moreno ◽  
Ahmed Balboula ◽  
Christine Spinka ◽  
Rocío Melissa Rivera

Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.


Author(s):  
Yuanyuan Li ◽  
Ning-Hua Mei ◽  
Gui-Ping Cheng ◽  
Jing Yang ◽  
Li-Quan Zhou

Mitochondrion plays an indispensable role during preimplantation embryo development. Dynamic-related protein 1 (DRP1) is critical for mitochondrial fission and controls oocyte maturation. However, its role in preimplantation embryo development is still lacking. In this study, we demonstrate that inhibition of DRP1 activity by mitochondrial division inhibitor-1, a small molecule reported to specifically inhibit DRP1 activity, can cause severe developmental arrest of preimplantation embryos in a dose-dependent manner in mice. Meanwhile, DRP1 inhibition resulted in mitochondrial dysfunction including decreased mitochondrial activity, loss of mitochondrial membrane potential, reduced mitochondrial copy number and inadequate ATP by disrupting both expression and activity of DRP1 and mitochondrial complex assembly, leading to excessive ROS production, severe DNA damage and cell cycle arrest at 2-cell embryo stage. Furthermore, reduced transcriptional and translational activity and altered histone modifications in DRP1-inhibited embryos contributed to impeded zygotic genome activation, which prevented early embryos from efficient development beyond 2-cell embryo stage. These results show that DRP1 inhibition has potential cytotoxic effects on mammalian reproduction, and DRP1 inhibitor should be used with caution when it is applied to treat diseases. Additionally, this study improves our understanding of the crosstalk between mitochondrial metabolism and zygotic genome activation.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Dongjie Zhou ◽  
Ming-Hong Sun ◽  
Song-Hee Lee ◽  
Xiang-Shun Cui

Abstract Background Reactive oxygen species (ROS) modulator 1 (ROMO1) is a mitochondrial membrane protein that is essential for the regulation of mitochondrial ROS production and redox sensing. ROMO1 regulates ROS generation within cells and is involved in cellular processes, such as cell proliferation, senescence, and death. Our purpose is to investigates the impact of ROMO1 on the mitochondria during porcine embryogenesis. Results We found that high expression of ROMO1 was associated with porcine preimplantation embryo development, indicating that ROMO1 may contribute to the progression of embryogenesis. Knockdown of ROMO1 disrupted porcine embryo development and blastocyst quality, thereby inducing ROS production and decreasing mitochondrial membrane potential. Knockdown of ROMO1 induced mitochondrial dysfunction by disrupting the balance of OPA1 isoforms to release cytochrome c, reduce ATP, and induce apoptosis. Meanwhile, ROMO1 overexpression showed similar effects as ROMO1 KD on the embryos. Overexpression of ROMO1 rescued the ROMO1 KD-induced defects in embryo development, mitochondrial fragmentation, and apoptosis. Conclusions ROMO1 plays a critical role in embryo development by regulating mitochondrial morphology, function, and apoptosis in pigs.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Sara Hosseini ◽  
Mohammad Salehi

Summary It has been documented that the inefficacy of round spermatid injection (ROSI) might be caused by abnormal epigenetic modifications. Therefore, this study aimed to evaluate the effect of trichostatin A (TSA) as an epigenetic modifier of preimplantation embryo development in activated ROSI oocytes. Matured oocytes were collected from superovulated female mice. Testes were placed in human tubal fluid medium and masses were then cut into small pieces to disperse spermatogenic cells. Round spermatids were treated with TSA and subsequently injected into oocytes. The expression level of the development-related genes including Oct4, Sox2, Nanog, Dnmt and Hdac transcripts were evaluated using qRT-PCR. Immunohistochemistry was performed to confirm the presence of Oct-4 protein at the blastocyst stage. There was no statistically significant difference in fertilization rate following ROSI/+TSA compared with the non-treated ROSI and intracytoplasmic sperm injection (ICSI) groups. Importantly, TSA treatment increased blastocyst formation from 38% in non-treated ROSI to 68%. The relative expression level of developmentally related genes increased and Dnmt transcripts decreased in ROSI/+TSA-derived embryos, similar to the expression levels observed in the ICSI-derived embryos. In conclusion, our results indicate that spermatid treatment with TSA prior to ROSI would increase the success rate of development to the blastocyst stage and proportion of pluripotent cells.


Andrology ◽  
2021 ◽  
Author(s):  
Jeffrey Hoek ◽  
Sam Schoenmakers ◽  
Linette Duijn ◽  
Sten. P. Willemsen ◽  
Eva S. Marion ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document