scholarly journals Biomass and Volume Modeling along with Carbon Concentration Variations of Short-Rotation Poplar Plantations

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 780 ◽  
Author(s):  
Lihu Dong ◽  
Faris Rafi Almay Widagdo ◽  
Longfei Xie ◽  
Fengri Li

Short-rotation forestry is of interest to provide biomass for bioenergy and act as a carbon sink to mitigate global warming. The Poplar tree (Populus × xiaohei) is a fast-growing and high-yielding tree species in Northeast China. In this study, a total of 128 Populus × xiaohei trees from the Songnen Plain, Heilongjiang Province, Northeastern China, were harvested. Several available independent variables, such as tree diameter at breast height (D), tree’s total height (H), crown width (CW), and crown length (CL), were differently combined to develop three additive biomass model systems and eight stem volume models for Populus × xiaohei tree. Variance explained within the three additive biomass model systems ranged from 83% to 98%, which was lowest for the foliage models, and highest for the stem biomass models. Similar findings were found in the stem volume models, in which the models explained more than 94% of the variance. The additional predictors, such as H, CL, or CW, evidently enhanced the model fitting and performance for the total and components biomass along with the stem volume models. Furthermore, the biomass conversion and expansion factors (BCEFs) of the root (118.2 kg/m3), stem (380.2 kg/m3), branch (90.7 kg/m3), and foliage (31.2 kg/m3) were also calculated. The carbon concentrations of Populus × xiaohei in root, stem, branch, and foliage components were 45.98%, 47.74%, 48.32%, and 48.46%, respectively. Overall, the newly established models in this study provided complete and comprehensive tools for quantifying the biomass and stem volume of Populus × xiaohei, which might be essential to be specifically utilized in the Chinese National Forest Inventory.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 840
Author(s):  
Willem Q. M. van de Koot ◽  
Larissa J. J. van Vliet ◽  
Weilun Chen ◽  
John H. Doonan ◽  
Candida Nibau

Sphagnum peatmosses play an important part in water table management of many peatland ecosystems. Keeping the ecosystem saturated, they slow the breakdown of organic matter and release of greenhouse gases, facilitating peatland’s function as a carbon sink rather than a carbon source. Although peatland monitoring and restoration programs have increased recently, there are few tools to quantify traits that Sphagnum species display in their ecosystems. Colony density is often described as an important determinant in the establishment and performance in Sphagnum but detailed evidence for this is limited. In this study, we describe an image analysis pipeline that accurately annotates Sphagnum capitula and estimates plant density using open access computer vision packages. The pipeline was validated using images of different Sphagnum species growing in different habitats, taken on different days and with different smartphones. The developed pipeline achieves high accuracy scores, and we demonstrate its utility by estimating colony densities in the field and detecting intra and inter-specific colony densities and their relationship with habitat. This tool will enable ecologists and conservationists to rapidly acquire accurate estimates of Sphagnum density in the field without the need of specialised equipment.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 398
Author(s):  
Amna Hussain ◽  
Muhammad Khurram Shahzad ◽  
Lichun Jiang

Crown architecture has long been evaluated for its impact on taper modeling. However, most of the research has focused on a limited number of crown dimensions. This study examined the effect of adding several crown dimensions in improving the diameter and volume estimates of Dahurian larch, Korean spruce, and Manchurian fir in northeast China. The crown dimensions included crown length, crown ratio, crown width, height to live crown base, diameter at the crown base, and crown shape. A well-known taper model of Clark et al. (1991) was fitted to the data of 276 trees from natural stands. To adjust the inherent autocorrelation in the data, we added a third-order continuous-time error structure in the model fit. Model fitting was carried out with the NLMIXED procedure (Non-linear Mixed Procedure), followed by the MODEL procedure of SAS using the generalized nonlinear least-squares method. Fit statistics and graphical assessments were used to evaluate the original and modified models. Above 98% of the total variance of d was explained by the models for all species. The addition of crown variables showed slight improvements for root mean square error (RMSE) values in the analyzed species. The RMSE plots indicated that the models with crown variables slightly improved the diameter and volume predictions for the species but only for the upper stem (>50%–90%). The study demonstrated that crown dimensions influence the stem taper, but the original model of Clark et al. (1991) reasonably realized that effect.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ayla O Sessions

Increased deposition of extracellular matrix (ECM) is observed in all advanced age heart failure patients, but current model systems are complex and slow to age. To investigate the effect of extracellular remodeling on mechanical function in genetically tractable, rapidly aging, and simple model organisms, we employed Drosophila melanogaster, which has a simple trilayered heart tube. We found that two common wildtype strains of Drosophila, i.e. yellow-white (yw) and white-1118 (w1118), exhibit different cytoskeletal and ECM remodeling with age. Using a recently developed nanoindentation method to measure cardiomyocyte stiffness and high speed optical imaging to assess contractility of intact Drosophila hearts, we found that yw flies had stiffer intercalated discs (ICD) and exhibited diastolic dysfunction with age. On the other hand, w1118 flies had a shorter lifespan compared to yw, did not exhibit ICD stiffening, had a less severe diastolic dysfunction, and showed an increase in ECM layer thickness between ventral muscle (VM) and cardiomyocyte (CM) layers of the heart tube. To modulate ECM and assess its effect in the aged w1118 flies, we knocked-down ECM genes LamininA and Viking (homologous to Collagen IV). Both ECM KD genotypes exhibited diastolic dilation with increased fractional shortening at adult (1wk) and aged (5wk) time points. The LamininA KD resulted in decreased cardiomyocyte stiffness correlating with increased relaxation velocities in adult flies and preservation of shortening and relaxation velocities in aged flies over controls. However, both the LamininA and Collagen IV KD flies experienced a basal increase in the decoupling of their cardiomyocytes as determined by heart period variance and % fibrillar heart-beats. These conductance issues were not enough to counteract the increased cardiac output and performance with age, and the Collagen IV KD outlived controls by 1.5 weeks median survival and the LamininA KD by 3 weeks. This suggests that the cell-ECM contacts in the basement membrane are intimately tied not only to the coupling of the cardiomyocytes of the Drosophila heart tube but also to cytoskeletal remodeling, but perhaps different ECM proteins have different mechanisms for interacting with the cardiomyocyte cytoskeleton.


Author(s):  
D.C. Smeaton ◽  
P.V. Rattray

Aspects of the above theme were investigated in 5 trials. Trial 1 compared the effects of high and low nutrition during pregnancy and lactation on ewe and iamb production. Ewe live weight was substantially affected by nutrition treatment during pregnancy but carry-over effects on live weight at weaning were small. Nutrition during lactation strongly affected both lamb and ewe weaning weights. Ewe and lamb losses were not affected by nutrition at any stage. The results implied that ewes can be quite severely restricted on pasture during pregnancy in order to save feed for the much more important lactation period. Trials 2 and 3 investigated the management of ewes fed at maintenance levels in mid-pregnancy. The treatments consisted of various grazing durations where the ewes were shifted from one pasture break to another after a specific grazing duration, as defined by their treatment. These treatments consisted of grazing durations ranging from 3 to 56 days. Liveweight differences occurred during the 56-dav trial period but at the end there was only 2.5kg difference between extreme treatments. This suggests that where ewes are on restricted feeding during pregnancy to conserve pasture reserves, grazing duration has little consistent impact on final ewe live weight and performance. However, for several reasons, a shorter duration (3-7 days) is preferred. Trials 4 and 5 compared several winter-spring management treatments. Ewes on a 35day (short) rotation during pregnancy versus those on a 70day (long) rotation had less pasture on their farmlet at lambing (930 V. 1030 kg/ha). As a consequence the short rotation ewes were 1.5 kg lighter at weaning. Their lambs ware 2.3 kg lighter. In another comparison, set-stocking ewes 4 weeks before lambing compared with at lambing disadvantaged the ewes and lambs by 2-3 kg at weaning. The ewes set-stocked 4 weeks before lambing had consumed most of their winter reserves by lambing. In Trial 5, rotational grazing after lambing until weaning versus set-stocking, disadvantaged the ewes and iambs by 4 and 3 kg respectively at weaning. This was probably because the rotation length of 21 days in the rotational group was too long. Management implications from these results are discussed. Keywords: winter, spring, nutrition, grazing management, ewes, lambs, pregnancy, lactation, grazing duration, rotational grazing, set stocking.


Silva Fennica ◽  
2020 ◽  
Vol 54 (5) ◽  
Author(s):  
Petteri Seppänen ◽  
Antti Mäkinen

The purpose of this study was to prepare a comprehensive, computerized teak ( L.f) plantation yield model system that can be used to describe the forest dynamics, predict growth and yield and support forest planning and decision-making. Extensive individual tree and permanent sample plot data were used to develop tree-level volume models, taper curve models and stand-level yield models for teak plantations in Panama. Tree volume models were satisfactorily validated against independent measurement data and other published models. Tree height as input parameter improved the stem volume model marginally. Stand level yield models produced comparable harvest volumes with models published in the literature. Stand level volume product outputs were found like actual harvests with an exception that the models marginally underestimate the share of logs in very large diameter classes. The kind of comprehensive model developed in this study and implemented in an easy to use software package provides a very powerful decision support tool. Optimal forest management regimes can be found by simulating different planting densities, thinning regimes and final harvest ages. Forest practitioners can apply growth and yield models in the appropriate stand level inventory data and perform long term harvest scheduling at property level or even at an entire timberland portfolio level. Harvest schedules can be optimized using the applicable financial parameters (silviculture costs, harvesting costs, wood prices and discount rates) and constraints (market size and operational capacity).Tectona grandis


2015 ◽  
Vol 72 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Alexander C. Vibrans ◽  
Paolo Moser ◽  
Laio Z. Oliveira ◽  
João P. de Maçaneiro

2004 ◽  
Vol 28 (3) ◽  
pp. 152-162 ◽  
Author(s):  
Kirk D. Howell ◽  
Timothy B. Harrington

Abstract To quantify effects of nursery practices on seedling cost and performance, cherrybark oaks (Quercus pagoda L.) were grown in three container sizes (170, 650, or 1,250 cm3) with or without fertilization and then planted Dec. 1995 at a site near Milledgeville, GA, with or without removal of container soil. Initial size, biomass, and leaf area of seedlings grown in medium and large containers were up to twice those grown in small containers, and they were greater with versus without fertilization. Price efficiency (stem volume divided by estimated nursery price of 1,000 seedlings) was greatest for medium and large containers with soil removed and hypothetically reused. Differences in stem diameter and height due to container size and fertilization continued to diverge through the fifth year after planting. Fifth-year yield (stem volume × proportionate survival of 1,000 planted seedlings) increased 104, 56, and 31% with increasing container size and with fertilization and soil removal, respectively. Cost efficiency (fifth-year yield divided by costs compounded 5 years at 5% interest) was greatest for medium and large containers with soil removed. Joint comparisons of nursery costs, planting costs, and field performance for different seedling stock types provide an objective approach for prioritizing cultural treatments in forestry. South. J. Appl. For. 28(3):152–162.


1992 ◽  
Vol 22 (12) ◽  
pp. 1937-1948 ◽  
Author(s):  
R. Ceulemans ◽  
G. Scarascia-Mugnozza ◽  
B. M. Wiard ◽  
J. H. Braatne ◽  
T. M. Hinckley ◽  
...  

Height and diameter growth, stem volume production, leaf phenology and leaf number, and number of branches of Populustrichocarpa Torr. & Gray, Populusdeltoides Bartr., and their F1 hybrids (P. trichocarpa × P. deltoides) were studied for 4 years in a research plantation in western Washington, United States. Twelve clones (three of each species and six of the hybrids) grew under a short-rotation silviculture regime in monoclonal plots at spacings of 1 × 1 m (10 000 stems/ha). Clones represented a north-south gradient within the geographic distribution of both the two North American poplar species and the parentage of the hybrid material. The results support earlier work by contributing additional evidence for the superiority of the hybrids. However, the relative hybrid superiority in these monoclonal plots was less pronounced than that found earlier in field trials with single-tree plots because of heightened intraclonal competition. After 4 years, mean estimated stem volume of the hybrids was 1.5 times that of P. trichocarpa and 2.3 times that of P. deltoides. Total tree height of the hybrids was 1.1 times that off. trichocarpa and 1.3 times that off. deltoides. Clonal variation was the dominant theme in height and diameter growth, stem volume productivity, time of bud break and bud set, tree mortality, and number of branches. Populustrichocarpa had the highest number of sylleptic branches, P. deltoides had the lowest, and hybrids were intermediate. Significant clone by replicate interactions were observed in height, diameter, and volume growth. Phenological traits, such as the dates of bud break and bud set, and the length of growing period only partly explained the observed differences in growth between the P. trichocarpa × P. deltoides hybrids and the parental species.


2001 ◽  
Vol 31 (5) ◽  
pp. 879-888 ◽  
Author(s):  
Kalle Eerikäinen

The aim of the study was to estimate stem volume and taper models for Pinus kesiya (Royle ex Gordon). The volume function provides a simple prediction model for the stem volume. Taper models were developed for over- and under-bark diameters. The under-bark taper curve was determined with the variable-exponent taper equation, whereas the over-bark taper curve was derived from the predicted under-bark taper model using the variable-exponent form of the bark-thickness model. Because of the spatial correlation structures of the data, the general assumption of uncorrelated residuals did not hold. In addition, the models were assumed to contain random parameters that vary from stand to stand and from tree to tree. Therefore, the fixed and random parameters of the models were estimated with the generalized least squares technique. The results of the study show that the mixed models for stem volume and taper are more reliable volume and diameter predictors for P. kesiya than earlier taper and volume functions.


Sign in / Sign up

Export Citation Format

Share Document