ecm remodeling
Recently Published Documents


TOTAL DOCUMENTS

405
(FIVE YEARS 238)

H-INDEX

36
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Seddik Hammad ◽  
Christoph Ogris ◽  
Amnah Othman ◽  
Pia Erdoesi ◽  
Wolfgang Schmidt-Heck ◽  
...  

The liver has a remarkable capacity to regenerate and thus compensates for repeated injuries through toxic chemicals, drugs, alcohol or malnutrition for decades. However, largely unknown is how and when alterations in the liver occur due to tolerable damaging insults. To that end, we induced repeated liver injuries over ten weeks in a mouse model injecting carbon tetrachloride (CCl4) twice a week. We lost 10% of the study animals within the first six weeks, which was accompanied by a steady deposition of extracellular matrix (ECM) regardless of metabolic activity of the liver. From week six onwards, all mice survived, and in these mice ECM deposition was rather reduced, suggesting ECM remodeling as a liver response contributing to better coping with repeated injuries. The data of time-resolved paired transcriptome and proteome profiling of 18 mice was subjected to multi-level network inference, using Knowledge guided Multi-Omics Network inference (KiMONo), identified multi-level key markers exclusively associated with the injury-tolerant liver response. Interestingly, pathways of cancer and inflammation were lighting up and were validated using independent data sets compiled of 1034 samples from publicly available human cohorts. A yet undescribed link to lipid metabolism in this damage-tolerant phase was identified. Immunostaining revealed an unexpected accumulation of small lipid droplets (microvesicular steatosis) in parallel to a recovery of catabolic processes of the liver to pre-injury levels. Further, mild inflammation was experimentally validated. Taken together, we identified week six as a critical time point to switch the liver response program from an acute response that fosters ECM accumulation to a tolerant 'survival' phase with pronounced deposition of small lipid droplets in hepatocytes potentially protecting against the repetitive injury with toxic chemicals. Our data suggest that microsteatosis formation plus a mild inflammatory state represent biomarkers and probably functional liver requirements to resist chronic damage.


2022 ◽  
Author(s):  
Shun Yan ◽  
Yin Peng ◽  
Jin Lu ◽  
Saima Shakil ◽  
Yang Shi ◽  
...  

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. We specifically inactivated Dicer1 in the endocardium during cardiogenesis, and unexpectedly found that Dicer1-deletion caused congenital mitral valve stenosis and regurgitation, while it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA Sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. Our study thus reveals miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.


2022 ◽  
Vol 23 (1) ◽  
pp. 520
Author(s):  
Matúš Soták ◽  
Meenu Rohini Rajan ◽  
Madison Clark ◽  
Christina Biörserud ◽  
Ville Wallenius ◽  
...  

Obesity is associated with extensive expansion and remodeling of the adipose tissue architecture, including its microenvironment and extracellular matrix (ECM). Although obesity has been reported to induce adipose tissue fibrosis, the composition of the ECM under healthy physiological conditions has remained underexplored and debated. Here, we used a combination of three established techniques (picrosirius red staining, a colorimetric hydroxyproline assay, and sensitive gene expression measurements) to evaluate the status of the ECM in metabolically healthy lean (MHL) and metabolically unhealthy obese (MUO) subjects. We investigated ECM deposition in the two major human adipose tissues, namely the omental and subcutaneous depots. Biopsies were obtained from the same anatomic region of respective individuals. We found robust ECM deposition in MHL subjects, which correlated with high expression of collagens and enzymes involved in ECM remodeling. In contrast, MUO individuals showed lower expression of ECM components but elevated levels of ECM cross-linking and adhesion proteins, e.g., lysyl oxidase and thrombospondin. Our data suggests that subcutaneous fat is more prone to express proteins involved in ECM remodeling than omental adipose tissues. We conclude that a more dynamic ability to deposit and remodel ECM may be a key signature of healthy adipose tissue, and that subcutaneous fat may adapt more readily to changing metabolic conditions than omental fat.


Author(s):  
Neena Philips ◽  
Mikel Portillo-Esnaola ◽  
Philips Samuel ◽  
Maria Gallego-Rentero ◽  
Tom Keller ◽  
...  

Photoaging and carcinogenesis are facilitated by oxidative stress, inflammation, angiogenesis, and extracellular matrix (ECM) remodeling. Oxidative effects include DNA damage, membrane oxidation, lipid peroxidation, and alterations in the expression of p53 and antioxidant enzymes. The inflammatory and angiogenesis mediators include interleukin-1, tumor necrosis factor-α, interleukin-8, transforming growth factor-β, and vascular endothelial growth factor. ECM remodeling includes alterations in the expression and organization of collagen, elastin, matrix metalloproteinases, and elastase. 1α, 25-dihydroxy-vitamin D3 has antioxidant, anti-inflammatory, and ECM regulatory properties, and can counteract the processes that facilitate photoaging and carcinogenesis. This review provides an overview of the beneficial effects of vitamin D supplementation at a molecular level, followed by a brief discussion regarding its use as a supplement.


2021 ◽  
Author(s):  
Bhaskar Basu ◽  
Subhajit Karmakar

Extracellular vesicles (EVs) are cell-derived lipid membrane bound vesicles that serve as mediators of intercellular communication. EVs have been found to regulate a wide range of cellular processes through the transference of genetic, protein and lipid messages from the host cell to the recipient cell. Unsurprisingly, this major mode of intracellular communication would be abrogated in cancer. Ever increasing evidence points towards a key role of EVs in promoting tumor development and in contributing to the various stages of metastasis. Tumor released EVs have been shown to facilitate the transference of oncogenic proteins and nucleic acids to other tumor cells and to the surrounding stromal cells, thereby setting up a tumor permissive microenvironment. EVs released from tumor cells have been shown to promote extracellular matrix (ECM) remodeling through the modulation of neighboring tumor cells and stromal cells. EVs released from disseminated tumor cells have been reported to attract circulating tumor cells (CTCs) via chemotaxis and induce the production of specific extracellular matrix components from neighboring stromal cells so as to support the growth of metastatic cells at the secondary tumor site. Circulating levels of tumor derived EVs of patients have been correlated with incidence of metastasis and disease relapse.


Author(s):  
Sanam Shafaattalab ◽  
Alison Y Li ◽  
Marvin G Gunawan ◽  
BaRun Kim ◽  
Farah Jayousi ◽  
...  

Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiovascular disease and often results in cardiac remodeling and an increased incidence of sudden cardiac arrest (SCA) and death, especially in youth and young adults. Among thousands of different variants found in HCM patients, variants of TNNT2 (cardiac troponin T—TNNT2) are linked to increased risk of ventricular arrhythmogenesis and sudden death despite causing little to no cardiac hypertrophy. Therefore, studying the effect of TNNT2 variants on cardiac propensity for arrhythmogenesis can pave the way for characterizing HCM in susceptible patients before sudden cardiac arrest occurs. In this study, a TNNT2 variant, I79N, was generated in human cardiac recombinant/reconstituted thin filaments (hcRTF) to investigate the effect of the mutation on myofilament Ca2+ sensitivity and Ca2+ dissociation rate using steady-state and stopped-flow fluorescence techniques. The results revealed that the I79N variant significantly increases myofilament Ca2+ sensitivity and decreases the Ca2+ off-rate constant (koff). To investigate further, a heterozygous I79N+/−TNNT2 variant was introduced into human-induced pluripotent stem cells using CRISPR/Cas9 and subsequently differentiated into ventricular cardiomyocytes (hiPSC-CMs). To study the arrhythmogenic properties, monolayers of I79N+/− hiPSC-CMs were studied in comparison to their isogenic controls. Arrhythmogenesis was investigated by measuring voltage (Vm) and cytosolic Ca2+ transients over a range of stimulation frequencies. An increasing stimulation frequency was applied to the cells, from 55 to 75 bpm. The results of this protocol showed that the TnT-I79N cells had reduced intracellular Ca2+ transients due to the enhanced cytosolic Ca2+ buffering. These changes in Ca2+ handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. While wild-type (WT) hiPSC-CMs were accurately entrained to frequencies of at least 150 bpm, the I79N hiPSC-CMs demonstrated clear patterns of alternans for both Vm and Ca2+ transients at frequencies >75 bpm. Lastly, a transcriptomic analysis was conducted on WT vs. I79N+/−TNNT2 hiPSC-CMs using a custom NanoString codeset. The results showed a significant upregulation of NPPA (atrial natriuretic peptide), NPPB (brain natriuretic peptide), Notch signaling pathway components, and other extracellular matrix (ECM) remodeling components in I79N+/− vs. the isogenic control. This significant shift demonstrates that this missense in the TNNT2 transcript likely causes a biophysical trigger, which initiates this significant alteration in the transcriptome. This TnT-I79N hiPSC-CM model not only reproduces key cellular features of HCM-linked mutations but also suggests that this variant causes uncharted pro-arrhythmic changes to the human action potential and gene expression.


Author(s):  
Xin Bi ◽  
Ye Li ◽  
Ziqing Dong ◽  
Jing Zhao ◽  
Weizi Wu ◽  
...  

Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1846
Author(s):  
Alex A. Meier ◽  
Hee-Jung Moon ◽  
Ronald Toth ◽  
Ewa Folta-Stogniew ◽  
Krzysztof Kuczera ◽  
...  

Lysyl oxidase-like 2 (LOXL2) has emerged as a promising therapeutic target against metastatic/invasive tumors and organ and tissue fibrosis. LOXL2 catalyzes the oxidative deamination of lysine and hydroxylysine residues in extracellular matrix (ECM) proteins to promote crosslinking of these proteins, and thereby plays a major role in ECM remodeling. LOXL2 secretes as 100-kDa full-length protein (fl-LOXL2) and then undergoes proteolytic cleavage of the first two scavenger receptor cysteine-rich (SRCR) domains to yield 60-kDa protein (Δ1-2SRCR-LOXL2). This processing does not affect the amine oxidase activity of LOXL2 in vitro. However, the physiological importance of this cleavage still remains elusive. In this study, we focused on characterization of biophysical properties of fl- and Δ1-2SRCR-LOXL2s (e.g., oligomeric states, molecular weights, and hydrodynamic radii in solution) to gain insight into the structural role of the first two SRCR domains. Our study reveals that fl-LOXL2 exists predominantly as monomer but also dimer to the lesser extent when its concentration is <~1 mM. The hydrodynamic radius (Rh) determined by multi-angle light scattering coupled with size exclusion chromatography (SEC-MALS) indicates that fl-LOXL2 is a moderately asymmetric protein. In contrast, Δ1-2SRCR-LOXL2 exists solely as monomer and its Rh is in good agreement with the predicted value. The Rh values calculated from a 3D modeled structure of fl-LOXL2 and the crystal structure of the precursor Δ1-2SRCR-LOXL2 are within a reasonable margin of error of the values determined by SEC-MALS for fl- and Δ1-2SRCR-LOXL2s in mature forms in this study. Based on superimposition of the 3D model and the crystal structure of Δ1-2SRCR-LOXL2 (PDB:5ZE3), we propose a configuration of fl-LOXL2 that explains the difference observed in Rh between fl- and Δ1-2SRCR-LOXL2s in solution.


2021 ◽  
Author(s):  
Raquel González-Blázquez ◽  
Martín Alcalá ◽  
José Miguel Cárdenas ◽  
Marta Viana ◽  
Ulrike Muscha Steckelings ◽  
...  

The aim of this study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). &#160;5-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1mg/kg/day, in the drinking water), generating 4 groups: Chow C, Chow C21, HF C, HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition, activity of metalloproteinases (MMP) 2 and 9 and TGF-b1 concentration were analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented β-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-b1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice.&lt;/p&gt; &#160;In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.


Sign in / Sign up

Export Citation Format

Share Document