scholarly journals Variations of the Oxidative Ratio across Ecosystem Components and Seasons in a Managed Temperate Beech Forest (Leinefelde, Germany)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1693
Author(s):  
Jonathan Jürgensen ◽  
Jan Muhr ◽  
Alexander Knohl

The oxidative ratio (OR) of organic material integrates the ratio of CO2 sequestered in biomass vs. O2 produced over longer timescales, but the temporal and spatial variability within a single ecosystem has received very limited attention. Between October 2017 and October 2019, we repeatedly sampled leaves, twigs, bark, outer stem wood, understorey vegetation and litter in a temperate beech forest close to Leinefelde (Germany) for OR measurements across a seasonal and spatial gradient. Plant component OR ranged from 1.004 ± 0.010 for fine roots to 1.089 ± 0.002 for leaves. Inter- and intra-annual differences for leaf and twig OR exist, but we found no correlation with sampling height within the canopy. Leaf OR had the highest temporal variability (minimum 1.069 ± 0.007, maximum 1.098 ± 0.002). This was expected, since leaf biomass of deciduous trees only represents the signal of the current growing season, while twig, stem and litter layer OR integrate multiple years. The sampling years 2018 and 2019 were unusually hot and dry, with low water availability in the summer, which could especially affect the August leaf OR. Total above-ground OR is dominated by the extremely stable stem OR and shows little variation (1.070 ± 0.02) throughout the two sampling years, even when facing extreme events.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 234
Author(s):  
Linda Flade ◽  
Christopher Hopkinson ◽  
Laura Chasmer

In this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant components consist of stem, branch, and leaf organs. We found similar ratios of component biomass to total AGB for stems, branches, and leaves amongst shrubs and deciduous tree genera/species across the southern Northwest Territories, while the evergreen Picea genus differed in the biomass allocation to aboveground plant organs compared to the deciduous genera/species. Shrub component AGB allometric models were derived using the three-dimensional variable volume as predictor, determined as the sum of line-intercept cover, upper foliage width, and maximum height above ground. Tree component AGB was modeled using the cross-sectional area of the stem diameter as predictor variable, measured at 0.30 m along the stem length. For shrub component AGB, we achieved better model fits for stem biomass (60.33 g ≤ RMSE ≤ 163.59 g; 0.651 ≤ R2 ≤ 0.885) compared to leaf biomass (12.62 g ≤ RMSE ≤ 35.04 g; 0.380 ≤ R2 ≤ 0.735), as has been reported by others. For short-stature trees, leaf biomass predictions resulted in similar model fits (18.21 g ≤ RMSE ≤ 70.0 g; 0.702 ≤ R2 ≤ 0.882) compared to branch biomass (6.88 g ≤ RMSE ≤ 45.08 g; 0.736 ≤ R2 ≤ 0.923) and only slightly better model fits for stem biomass (30.87 g ≤ RMSE ≤ 11.72 g; 0.887 ≤ R2 ≤ 0.960), which suggests that leaf AGB of short-stature trees (<4.5 m) can be more accurately predicted using cross-sectional area as opposed to diameter at breast height for tall-stature trees. Our multi-species shrub and short-stature tree allometric models showed promising results for predicting plant component AGB, which can be utilized for remote sensing applications where plant functional types cannot always be distinguished. This study provides critical information on plant AGB allocation as well as component AGB modeling, required for understanding boreal AGB and aboveground carbon pools within the dynamic and rapidly changing Taiga Plains and Taiga Shield ecozones. In addition, the structural information and component AGB equations are important for integrating shrubs and short-stature tree AGB into carbon accounting strategies in order to improve our understanding of the rapidly changing boreal ecosystem function.


2018 ◽  
Author(s):  
Anna Nikandrova ◽  
Ksenia Tabakova ◽  
Antti Manninen ◽  
Riikka Väänänen ◽  
Tuukka Petäjä ◽  
...  

Abstract. Understanding the distribution of aerosol layers is important for determining long range transport and aerosol radiative forcing. In this study we combine airborne in situ measurements of aerosol with data obtained by a ground-based High Spectral Resolution Lidar (HSRL) and radiosonde profiles to investigate the temporal and vertical variability of aerosol properties in the lower troposphere. The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) mobile facility during the BAECC (Biogenic Aerosols – Effects on Cloud and Climate) Campaign. Two flight campaigns took place in April and August 2014 with instruments measuring the aerosol size distribution from 10 nm to 10 µm at altitudes up to 3800 m. Two case studies from the flight campaigns, when several aerosol layers were identified, were selected for further investigation: one clear sky case, and one partly cloudy case. During the clear sky case, turbulent mixing ensured low temporal and spatial variability in the measured aerosol size distribution in the boundary layer whereas mixing was not as homogeneous in the boundary layer during the partly cloudy case. The elevated layers exhibited greater temporal and spatial variability in aerosol size distribution, indicating a lack of mixing. New particle formation was observed in the boundary layer during the clear sky case, and nucleation mode particles were also seen in the elevated layers that were not mixing with the boundary layer. Interpreting local measurements of elevated layers in terms of long-range transport can be achieved using back trajectories from Lagrangian models, but care should be taken in selecting appropriate arrival heights, since the modelled and observed layer heights did not always coincide. We conclude that higher confidence in attributing elevated aerosol layers with their air mass origin is attained when back trajectories are combined with lidar and radiosonde profiles.


2006 ◽  
Vol 26 (3) ◽  
pp. 351-362 ◽  
Author(s):  
T.J. Tolhurst ◽  
E.C. Defew ◽  
J.F.C. de Brouwer ◽  
K. Wolfstein ◽  
L.J. Stal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document