scholarly journals Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec)

Forests ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 120 ◽  
Author(s):  
Serge Payette ◽  
Vanessa Pilon ◽  
Pierre-Luc Couillard ◽  
Jason Laflamme
2011 ◽  
Vol 41 (10) ◽  
pp. 2031-2039 ◽  
Author(s):  
Amy E. Hessl ◽  
Tom Saladyga ◽  
Thomas Schuler ◽  
Peter Clark ◽  
Joshua Wixom

The impact of settlement era fires on Appalachian forests was substantial, but whether these fires affected the extent of fire-adapted ridgetop plant communities is poorly understood. Here we present fire history and stand structure of an Appalachian ridgetop (Pike Knob, West Virginia) based on fire scars from three species (Pinus pungens Lamb., Pinus resinosa Soland., and Quercus rubra L.) and stand structure from two species (P. pungens and P. resinosa). Our research objectives are to determine (i) the degree to which the fire frequency on Pike Knob was affected by European American settlement (~1780–1900) and (ii) how the history of fire on Pike Knob shaped the current age structure of P. resinosa and P. pungens. All three species documented fire activity beginning in the mid- to late 1800s and continuing into the middle of the 20th century, when pasture lands were most active. The majority of P. pungens and P. resinosa established during or shortly after the ~85-year period of fires (1868–1953), suggesting a strong influence of past land use on current forest composition. Ridgetop pine communities have been resilient to both the absence of fire and frequent fire, indicating that pine communities will also be resilient to modern fire management, whether fire is excluded or re-introduced.


1981 ◽  
Vol 29 (1) ◽  
pp. 81 ◽  
Author(s):  
B Lamont

Kingia australis, common in the heaths and forests of south-western Australia, is distinguished from all other grass trees in Australia by the presence of a mantle of concealed aerial roots. A ring of up to 50 root primordia is initiated in winter from the stem apex. In plants more than 1 m high, initiation and commencement of elongation of the primary roots are no longer annual but dependent on the fire history of the plant. These roots descend between the stem and persistent leaf bases at about 2 cm per growing month, sending many lateral branches among the leaf bases. Aerial roots gradually replace the space occupied by the leaf bases until they may account for 45% of the dry weight of the aerial caudex. The caudex of one 6-m-high specimen bore up to 27 roots per cm2 transection of the root mantle, with about 3000 primary roots entering the soil. All underground primary roots (except the initial contractile roots) have an aerial origin and are concentrated vertically under the canopy. After 300-400 years the stem starts to die back from the base, and the aerial roots attached to that portion disintegrate. By propping up the stem and bridging the dead zone of the stem, the living aerial roots greatly extend the potential height and longevity of the plant. In addition, the hairy laterals are ideally located to absorb water and nutrients directly from the leaf bases. Protective and aerating functions are also indicated.


2015 ◽  
Vol 24 (6) ◽  
pp. 731-741 ◽  
Author(s):  
Jennifer L. Clear ◽  
Heikki Seppä ◽  
Niina Kuosmanen ◽  
Richard H. W. Bradshaw

1986 ◽  
Vol 16 (5) ◽  
pp. 1013-1018 ◽  
Author(s):  
Lauren Fins ◽  
Lisa W. Seeb

Seed samples from 19 stands of Larixoccidentalis Nutt. were analyzed for electrophoretic variation at 23 loci. Because sample sizes consisted of only 9 or 10 trees per stand (18–20 alleles per locus per stand), samples were grouped by geographic proximity into four larger samples. For all measures of variation, this species scored lower than most, but within the range observed for other western conifers. Most of the variation was found within rather than between the population groups. The single southern sample appeared to be genetically distinct from the others. Although some variation was observed between individual stand samples in expected heterozygosity, the consistently low values for all samples suggest that genetic drift has played a major role in the genetic history of the species in the Inland Empire, both through its glacial history in postulated refugia and through fire history in recent times.


2009 ◽  
Vol 90 (2) ◽  
pp. 371-373
Author(s):  
Mark Kuhlberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document