Awful Splendour: A Fire History of Canada (review)

2009 ◽  
Vol 90 (2) ◽  
pp. 371-373
Author(s):  
Mark Kuhlberg
Keyword(s):  
1981 ◽  
Vol 29 (1) ◽  
pp. 81 ◽  
Author(s):  
B Lamont

Kingia australis, common in the heaths and forests of south-western Australia, is distinguished from all other grass trees in Australia by the presence of a mantle of concealed aerial roots. A ring of up to 50 root primordia is initiated in winter from the stem apex. In plants more than 1 m high, initiation and commencement of elongation of the primary roots are no longer annual but dependent on the fire history of the plant. These roots descend between the stem and persistent leaf bases at about 2 cm per growing month, sending many lateral branches among the leaf bases. Aerial roots gradually replace the space occupied by the leaf bases until they may account for 45% of the dry weight of the aerial caudex. The caudex of one 6-m-high specimen bore up to 27 roots per cm2 transection of the root mantle, with about 3000 primary roots entering the soil. All underground primary roots (except the initial contractile roots) have an aerial origin and are concentrated vertically under the canopy. After 300-400 years the stem starts to die back from the base, and the aerial roots attached to that portion disintegrate. By propping up the stem and bridging the dead zone of the stem, the living aerial roots greatly extend the potential height and longevity of the plant. In addition, the hairy laterals are ideally located to absorb water and nutrients directly from the leaf bases. Protective and aerating functions are also indicated.


2015 ◽  
Vol 24 (6) ◽  
pp. 731-741 ◽  
Author(s):  
Jennifer L. Clear ◽  
Heikki Seppä ◽  
Niina Kuosmanen ◽  
Richard H. W. Bradshaw

1986 ◽  
Vol 16 (5) ◽  
pp. 1013-1018 ◽  
Author(s):  
Lauren Fins ◽  
Lisa W. Seeb

Seed samples from 19 stands of Larixoccidentalis Nutt. were analyzed for electrophoretic variation at 23 loci. Because sample sizes consisted of only 9 or 10 trees per stand (18–20 alleles per locus per stand), samples were grouped by geographic proximity into four larger samples. For all measures of variation, this species scored lower than most, but within the range observed for other western conifers. Most of the variation was found within rather than between the population groups. The single southern sample appeared to be genetically distinct from the others. Although some variation was observed between individual stand samples in expected heterozygosity, the consistently low values for all samples suggest that genetic drift has played a major role in the genetic history of the species in the Inland Empire, both through its glacial history in postulated refugia and through fire history in recent times.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 48
Author(s):  
Kira M. Hoffman ◽  
Sara B. Wickham ◽  
William S. McInnes ◽  
Brian M. Starzomski

Fire exclusion and suppression has altered the composition and structure of Garry oak and associated ecosystems in British Columbia. The absence of frequent low severity ground fires has been one of the main contributors to dense patches of non-native grasses, shrubs, and encroaching Douglas-fir trees in historical Garry oak dominated meadows. This case study uses remote sensing and dendrochronology to reconstruct the stand dynamics and long-term fire history of a Garry oak meadow situated within Helliwell Provincial Park located on Hornby Island, British Columbia. The Garry oak habitat in Helliwell Park has decreased by 50% since 1950 due to conifer encroachment. Lower densities and mortalities of Garry oak trees were associated with the presence of overstory Douglas-fir trees. To slow conifer encroachment into the remaining Garry oak meadows, we recommend that mechanical thinning of Douglas-fir be followed by a prescribed burning program. Reintroducing fire to Garry oak ecosystems can restore and maintain populations of plants, mammals, and insects that rely on these fire resilient habitats.


Sign in / Sign up

Export Citation Format

Share Document