scholarly journals Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact

Forests ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 196 ◽  
Author(s):  
Tayierjiang Aishan ◽  
Florian Betz ◽  
Ümüt Halik ◽  
Bernd Cyffka ◽  
Aihemaitijiang Rouzi
Author(s):  
Dr. Nidhi Chaturvedi, ◽  

The carbon sequestration potential of an unmanaged and previously unstudied Acacia catechu in the Mukundara National Park Rajasthan, by estimating the total aboveground biomass contained in the forest. It turned into observed that the biomass, above ground comprising of stems, branches, and foliage, holds a total of 200 tons per hectare, foremost to a valued 100 tons of carbon being deposited per hectare aboveground. Acacia species consequently has the potential to play a significant function within the mitigation of climate change. The relation among the biomass, M, of each component (stems, branches, and foliage) and the diameter d, of the plant become also studied, by means of fitting allometric equations of the form M = αdβ. It was observed that all components fit this power law relation very well (R2 > 0.7), chiefly the stems (R2 > 0.8) and branches (R2 > 0.9) for which the relation is found to be almost linear.


Author(s):  
Abdullahi Jibrin ◽  
Sule Mohammed Zubairu ◽  
Aishatu Abdulkadir ◽  
Sakoma J Kaura ◽  
Amos Bitrus Baminda

This study provides a preliminary assessment of the biophysical potential for carbon sequestration. Quantification of carbon stock and estimation of carbon sequestration potential was carried out in the Kpashimi Forest Reserve, Niger state, Nigeria. Carbon stock was measured in the six vegetation communities existing in the study area. Forty-eight randomly selected 20 x 20 metre quadrats were established wherein data was collected from the main forest carbon pools; including above ground tree, below ground root, undergrowth (shrub grasses), dead wood, litter and soil organic carbon. Biomass of the respective pools was quantified by destructive sampling and use of allometric equations. Thereafter, biomass values were converted to carbon stock equivalent. Four satellite imageries TM, SPOT, ETM+, and NIGERIASAT-1 of 1987, 1994, 2001 and 2007 respectively were used to estimate vegetation cover and carbon stock change over 20 years. The results showed that average carbon stock density (Mg C/ha) of the vegetation communities was in the decreasing order; Riparian forest (123.58 ± 9.1), Savanna woodland (97.71 ± 8.2), Degraded forest (62.92 ± 6.1), Scrubland (36.28 ± 4.1), Grassland (18.22 ± 5.1), and bare surface (9.31 ± 3.1). Deforestation and forest degradation between 1987 and 2007 have resulted in emission of 240.2 Mg (ton) C ha-1 at an annual rate of 12.01 Mg C ha-1. This suggests that the study site has carbon sequestration potential of 240.2 Mg C ha-1 based on its capacity to increase carbon stock through restoration; back to speculated 1987 levels and even higher. Thus, the study recommends the need to analyse carbon offset project feasibility in the study area.


2018 ◽  
Vol 13 (3) ◽  
pp. 465-471
Author(s):  
AKHILESH SINGH ◽  
S.K. VERMA ◽  
PRIYADARSHANI A. KHAMBALKAR ◽  
SHASHI S. YADAV ◽  
SUNIL RAJPUT

Erosion through ravines causes many problems on bank of Chambal river in Madhya Pradesh. It damages rangelands, croplands and infra-structures. Plantation of different fruit trees (Moringa oleifera, Amblica officinalis, Psidium guaijava, Ziziphuszezuba, Punica grantum, Annonasquamosa), forest / medicinal trees (Cenchr sciliaris,Azardirechtaindica, Pongamia pinnata, Albizialebbeck, Dalbergiasisso and Acacia nilotica)) and some grasses (lemon grass, pamarosa, para and napier grass) under four management modules viz. M1-diversified cropping system, M2- Agri-horticultural, M3- Horti-pastoral, M4- Silvi-medicinal and M5- Silvi-pastoral were raised during 2012 at 3x3 m spacing. Plants absorb carbon dioxide from the atmosphere by the process of photosynthesis and store the carbon (C) as biomass.The highest biomass carbon wasyielded in ModuleM3, followed by M2, M5, M4 and M1, respectively. The average biomass carbon was found highest in grasses followed by fruit and forest trees. The study shows that the carbon sequestration in soil (0-15 cm) was found highest in M4 (0.45%) followed by M5 (0.44%), M1 (0.36%), M2 (0.35%) and between depth 15-25 cm the soil sequestration was highest in M1. The percent increase in soil carbon from 2012 to 2017 was highest in M1 (0-15 cm), while in depth 15-25 cm M4 showedhighest increase in soil carbon. Available nutrient status showedtremendous changes over initial value whereas available phosphorous showed decreasing trend under all modules after six years of studies.


2020 ◽  
Vol 3 (1) ◽  
pp. 52
Author(s):  
Richa Sharma ◽  
Lolita Pradhan ◽  
Maya Kumari ◽  
Prodyut Bhattacharya

Urban green spaces, particularly trees, have great potential to sequester carbon from the atmosphere and mitigate the impacts of climate change in cities. Large university campuses offer prominent space where such green spaces can be developed in order to offset the increasing greenhouse gas emissions, as well as other benefits. Amity University, Noida, is spread over 60 acres with dense tree plantations in and around the campus. The present study is a sustainability initiative to inventory the tree species on the campus and assess their total carbon sequestration potential (CSP). The above- and below-ground biomasses were estimated using the non-destructive sampling method. Individual trees on the campus were measured for their height and diameter at breast height (DBH), and estimates of carbon storage were performed using allometric equations. There is a total of 45 different tree species on the campus with the total CSP equivalent to approximately 139.86 tons. The results also reveal that Ficus benjamina was the predominant species on the campus with CSP equivalent to 30.53 tons, followed by Alstonia scholaris with carbon storage of 16.38 tons. The study reports that the ratio of native to exotic species is 22:23 or almost 1:1. The present work highlights the role of urban forests or urban green spaces, not only as ornamental and aesthetic plantations but also in mitigating the impacts of climate change at a local level. Higher education institutes have an important role in expanding their green cover so as to act as local carbon sinks.


Sign in / Sign up

Export Citation Format

Share Document