scholarly journals Combining Xylose Reductase from Spathaspora arborariae with Xylitol Dehydrogenase from Spathaspora passalidarum to Promote Xylose Consumption and Fermentation into Xylitol by Saccharomyces cerevisiae

Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 72
Author(s):  
Adriane Mouro ◽  
Angela A. dos Santos ◽  
Denis D. Agnolo ◽  
Gabriela F. Gubert ◽  
Elba P. S. Bon ◽  
...  

In recent years, many novel xylose-fermenting yeasts belonging to the new genus Spathaspora have been isolated from the gut of wood-feeding insects and/or wood-decaying substrates. We have cloned and expressed, in Saccharomyces cerevisiae, a Spathaspora arborariae xylose reductase gene (SaXYL1) that accepts both NADH and NADPH as co-substrates, as well as a Spathaspora passalidarum NADPH-dependent xylose reductase (SpXYL1.1 gene) and the SpXYL2.2 gene encoding for a NAD+-dependent xylitol dehydrogenase. These enzymes were co-expressed in a S. cerevisiae strain over-expressing the native XKS1 gene encoding xylulokinase, as well as being deleted in the alkaline phosphatase encoded by the PHO13 gene. The S. cerevisiae strains expressing the Spathaspora enzymes consumed xylose, and xylitol was the major fermentation product. Higher specific growth rates, xylose consumption and xylitol volumetric productivities were obtained by the co-expression of the SaXYL1 and SpXYL2.2 genes, when compared with the co-expression of the NADPH-dependent SpXYL1.1 xylose reductase. During glucose-xylose co-fermentation by the strain with co-expression of the SaXYL1 and SpXYL2.2 genes, both ethanol and xylitol were produced efficiently. Our results open up the possibility of using the advantageous Saccharomyces yeasts for xylitol production, a commodity with wide commercial applications in pharmaceuticals, nutraceuticals, food and beverage industries.


Author(s):  
Ji-Hye Han ◽  
Ju-Yong Park ◽  
Kye Sang Yoo ◽  
Hyun Woo Kang ◽  
Gi-Wook Choi ◽  
...  


2001 ◽  
Vol 29 (4-5) ◽  
pp. 288-297 ◽  
Author(s):  
Anna Eliasson ◽  
Jan-Hendrik S Hofmeyr ◽  
Scott Pedler ◽  
Bärbel Hahn-Hägerdal


2004 ◽  
Vol 35 (6-7) ◽  
pp. 545-549 ◽  
Author(s):  
Sun-Myung Bae ◽  
Yong-Cheol Park ◽  
Tae-Hee Lee ◽  
Do-Hyun Kweon ◽  
Jin-Ho Choi ◽  
...  


2012 ◽  
Vol 15 (1) ◽  
pp. 123-131
Author(s):  
Yaseen I. Mamoori ◽  
◽  
Majed H. Al-Jelawi ◽  
Abdul Ghani I. Yahya ◽  
◽  
...  


2009 ◽  
Vol 75 (11) ◽  
pp. 3818-3822 ◽  
Author(s):  
Akinori Matsushika ◽  
Hiroyuki Inoue ◽  
Seiya Watanabe ◽  
Tsutomu Kodaki ◽  
Keisuke Makino ◽  
...  

ABSTRACT The recombinant industrial Saccharomyces cerevisiae strain MA-R5 was engineered to express NADP+-dependent xylitol dehydrogenase using the flocculent yeast strain IR-2, which has high xylulose-fermenting ability, and both xylose consumption and ethanol production remarkably increased. Furthermore, the MA-R5 strain produced the highest ethanol yield (0.48 g/g) from nonsulfuric acid hydrolysate of wood chips.



2000 ◽  
Vol 66 (8) ◽  
pp. 3381-3386 ◽  
Author(s):  
Anna Eliasson ◽  
Camilla Christensson ◽  
C. Fredrik Wahlbom ◽  
Bärbel Hahn-Hägerdal

ABSTRACT For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiaehas been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenousXKS1 gene, encoding xylulokinase (XK), under control of thePGK1 promoter were integrated into the chromosomalHIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h−1 g (dry weight) of cells−1 (0.24 to 0.30 g h−1 g [dry weight] of cells−1) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h−1. The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h−1 g (dry weight) of cells−1 when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h−1 g (dry weight) of cells−1 when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.



2001 ◽  
Vol 67 (9) ◽  
pp. 4249-4255 ◽  
Author(s):  
Björn Johansson ◽  
Camilla Christensson ◽  
Timothy Hobley ◽  
Bärbel Hahn-Hägerdal

ABSTRACT Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) andXYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The geneXKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect ofXKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressingXYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate.XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.



Sign in / Sign up

Export Citation Format

Share Document