xylose fermentation
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 32)

H-INDEX

47
(FIVE YEARS 3)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 288
Author(s):  
Andreea Cristina Dobrescu ◽  
Henrique César Teixeira Veras ◽  
Cristiano Varrone ◽  
Jan Dines Knudsen

An economically viable production of second-generation bioethanol by recombinant xylose-fermenting Saccharomyces cerevisiae requires higher xylose fermentation rates and improved glucose–xylose co-consumption. Moreover, xylose-fermenting S. cerevisiae recognises xylose as a non-fermentable rather than a fermentable carbon source, which might partly explain why xylose is not fermented into ethanol as efficiently as glucose. This study proposes propagating S. cerevisiae on non-fermentable carbon sources to enhance xylose metabolism during fermentation. When compared to yeast grown on sucrose, cells propagated on a mix of ethanol and glycerol in shake flasks showed up to 50% higher xylose utilisation rate (in a defined xylose medium) and a double maximum fermentation rate, together with an improved C5/C6 co-consumption (on an industrial softwood hydrolysate). Based on these results, an automated propagation protocol was developed, using a fed-batch approach and the respiratory quotient to guide the ethanol and glycerol-containing feed. This successfully produced 71.29 ± 0.91 g/L yeast with an average productivity of 1.03 ± 0.05 g/L/h. These empirical findings provide the basis for the design of a simple, yet effective yeast production strategy to be used in the second-generation bioethanol industry for increased fermentation efficiency.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jung-Hoon Bae ◽  
Mi-Jin Kim ◽  
Bong Hyun Sung ◽  
Yong-Su Jin ◽  
Jung-Hoon Sohn

Abstract Background Xylose contained in lignocellulosic biomass is an attractive carbon substrate for economically viable conversion to bioethanol. Extensive research has been conducted on xylose fermentation using recombinant Saccharomyces cerevisiae expressing xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways along with the introduction of a xylose transporter and amplification of the downstream pathway. However, the low utilization of xylose in the presence of glucose, due to the varying preference for cellular uptake, is a lingering challenge. Studies so far have mainly focused on xylose utilization inside the cells, but there have been little trials on the conversion of xylose to xylulose by cell before uptake. We hypothesized that the extracellular conversion of xylose to xylulose before uptake would facilitate better utilization of xylose even in the presence of glucose. To verify this, XI from Piromyces sp. was engineered and hyper-secreted in S. cerevisiae for the extracellular conversion of xylose to xylulose. Results The optimal pH of XI was lowered from 7.0 to 5.0 by directed evolution to ensure its high activity under the acidic conditions used for yeast fermentation, and hyper-secretion of an engineered XI-76 mutant (E56A and I252M) was accomplished by employing target protein-specific translational fusion partners. The purified XI-76 showed twofold higher activity than that of the wild type at pH 5. The secretory expression of XI-76 in the previously developed xylose utilizing yeast strain, SR8 increased xylose consumption and ethanol production by approximately 7–20% and 15–20% in xylose fermentation and glucose and xylose co-fermentation, respectively. Conclusions Isomerisation of xylose to xylulose before uptake using extracellular XI was found to be effective in xylose fermentation or glucose/xylose co-fermentation. This suggested that glucose competed less with xylulose than with xylose for uptake by the cell. Consequently, the engineered XI secretion system constructed in this study can pave the way for simultaneous utilization of C5/C6 sugars from the sustainable lignocellulosic biomass.


2021 ◽  
Vol 68 ◽  
pp. 119-130
Author(s):  
Sae-Byuk Lee ◽  
Mary Tremaine ◽  
Michael Place ◽  
Lisa Liu ◽  
Austin Pier ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bianca A. Brandt ◽  
Maria D. P. García-Aparicio ◽  
Johann F. Görgens ◽  
Willem H. van Zyl

Abstract Background The fermentation of lignocellulose hydrolysates to ethanol requires robust xylose-capable Saccharomycescerevisiae strains able to operate in the presence of microbial inhibitory stresses. This study aimed at developing industrial S.cerevisiae strains with enhanced tolerance towards pretreatment-derived microbial inhibitors, by identifying novel gene combinations that confer resistance to multiple inhibitors (thus cumulative inhibitor resistance phenotype) with minimum impact on the xylose fermentation ability. The strategy consisted of multiple sequential delta-integrations of double-gene cassettes containing one gene conferring broad inhibitor tolerance (ARI1, PAD1 or TAL1) coupled with an inhibitor-specific gene (ADH6, FDH1 or ICT1). The performances of the transformants were compared with the parental strain in terms of biomass growth, ethanol yields and productivity, as well as detoxification capacities in a synthetic inhibitor cocktail, sugarcane bagasse hydrolysate as well as hardwood spent sulphite liquor. Results The first and second round of delta-integrated transformants exhibited a trade-off between biomass and ethanol yield. Transformants showed increased inhibitor resistance phenotypes relative to parental controls specifically in fermentations with concentrated spent sulphite liquors at 40% and 80% v/v concentrations in 2% SC media. Unexpectedly, the xylose fermentation capacity of the transformants was reduced compared to the parental control, but certain combinations of genes had a minor impact (e.g. TAL1 + FDH1). The TAL1 + ICT1 combination negatively impacted on both biomass growth and ethanol yield, which could be linked to the ICT1 protein increasing transformant susceptibility to weak acids and temperature due to cell membrane changes. Conclusions The integration of the selected genes was proven to increase tolerance to pretreatment inhibitors in synthetic or industrial hydrolysates, but they were limited to the fermentation of glucose. However, some gene combination sequences had a reduced impact on xylose conversion.


Author(s):  
Gisele Cristina de Lima Palermo ◽  
Natalia Coutouné ◽  
João Gabriel Ribeiro Bueno ◽  
Lucas Ferreira Maciel ◽  
Leandro Vieira Santos

2021 ◽  
pp. 125677
Author(s):  
Nagarajan Arumugam ◽  
Thulasinathan Boobalan ◽  
Arivalagan Pugazhendhi ◽  
Alagarsamy Arun ◽  
Muthuramalingam Jothi Basu ◽  
...  

Author(s):  
Minhye Shin ◽  
Heeyoung Park ◽  
Sooah Kim ◽  
Eun Joong Oh ◽  
Deokyeol Jeong ◽  
...  

Being a microbial host for lignocellulosic biofuel production, Saccharomyces cerevisiae needs to be engineered to express a heterologous xylose pathway; however, it has been challenging to optimize the engineered strain for efficient and rapid fermentation of xylose. Deletion of PHO13 (Δpho13) has been reported to be a crucial genetic perturbation in improving xylose fermentation. A confirmed mechanism of the Δpho13 effect on xylose fermentation is that the Δpho13 transcriptionally activates the genes in the non-oxidative pentose phosphate pathway (PPP). In the current study, we found a couple of engineered strains, of which phenotypes were not affected by Δpho13 (Δpho13-negative), among many others we examined. Genome resequencing of the Δpho13-negative strains revealed that a loss-of-function mutation in GCR2 was responsible for the phenotype. Gcr2 is a global transcriptional factor involved in glucose metabolism. The results of RNA-seq confirmed that the deletion of GCR2 (Δgcr2) led to the upregulation of PPP genes as well as downregulation of glycolytic genes, and changes were more significant under xylose conditions than those under glucose conditions. Although there was no synergistic effect between Δpho13 and Δgcr2 in improving xylose fermentation, these results suggested that GCR2 is a novel knockout target in improving lignocellulosic ethanol production.


Author(s):  
Minhye Shin ◽  
Heeyoung Park ◽  
Sooah Kim ◽  
Eun Joong Oh Oh ◽  
Deokyeol Jeong ◽  
...  

As a microbial host for cellulosic biofuel production, Saccharomyces cerevisiae needs to be engineered to express a heterologous xylose pathway. However, it has been challenging to optimize the engineered strain for efficient and rapid fermentation of xylose. Deletion of PHO13 (pho13) has been reported to be a crucial genetic perturbation for improving xylose fermentation. A confirmed mechanism of the pho13-positive effect on xylose fermentation is that the deletion of PHO13 transcriptionally activates the genes in the non-oxidative pentose phosphate pathway (PPP). In the present study, we reported that a pho13-positive effect was not observed from a couple of engineered strains, among the many others we have examined. To extend our knowledge of pho13-mediated metabolic regulation, we performed genome sequencing of pho13-negative strains. We identified a loss-of-function mutation in GCR2 responsible for the pho13-negative phenotype. Gcr2 is a transcriptional activator of the lower glycolytic pathway. Thus, the deletion of GCR2 (gcr2) led to deactivation of lower glycolysis as confirmed by RNA-seq. Also, gcr2 resulted in the up-regulation of PPP genes, which explains the improved xylose fermentation of gcr2 mutants. As pho13 and gcr2 cause similar transcriptional changes with PPP genes, there was no synergistic effect between pho13 and gcr2 for improving xylose fermentation. The present study identified GCR2 as a new knockout target to improve xylose fermentation and cellulosic biofuel production. Now published in Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2021.654177


Sign in / Sign up

Export Citation Format

Share Document