scholarly journals Nutrient Patchiness, Phytoplankton Surge-Uptake, and Turbulent History: A Theoretical Approach and Its Experimental Validation

Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 80
Author(s):  
Mathilde Schapira ◽  
Laurent Seuront

Despite ample evidence of micro- and small-scale (i.e., millimeter- to meter-scale) phytoplankton and zooplankton patchiness in the ocean, direct observations of nutrient distributions and the ecological importance of this phenomenon are still relatively scarce. In this context, we first describe a simple procedure to continuously sample nutrients in surface waters, and subsequently provide evidence of the existence of microscale distribution of ammonium in the ocean. We further show that ammonium is never homogeneously distributed, even under very high conditions of turbulence. Instead, turbulence intensity appears to control nutrient patchiness, with a more homogeneous or a more heterogeneous distribution observed under high and low turbulence intensities, respectively, under the same concentration in nutrient. Based on a modelling procedure taking into account the stochastic properties of intermittent nutrient distributions and observations carried out on natural phytoplankton communities, we introduce and verify the hypothesis that under nutrient limitation, the “turbulent history” of phytoplankton cells, i.e., the turbulent conditions they experienced in their natural environments, conditions their efficiency to uptake ephemeral inorganic nitrogen patches of different concentrations. Specifically, phytoplankton cells exposed to high turbulence intensities (i.e., more homogeneous nutrient distribution) were more efficient to uptake high concentration nitrogen pulses (2 µM). In contrast, under low turbulence conditions (i.e., more heterogeneous nutrient distribution), uptake rates were higher for low concentration nitrogen pulses (0.5 µM). These results suggest that under nutrient limitation, natural phytoplankton populations respond to high turbulence intensities through a decrease in affinity for nutrients and an increase in their transport rate, and vice versa.

2016 ◽  
Vol 542 ◽  
pp. 51-62 ◽  
Author(s):  
JR Graff ◽  
TK Westberry ◽  
AJ Milligan ◽  
MB Brown ◽  
G Dall’Olmo ◽  
...  

Author(s):  
Roksana Jahan ◽  
Hyu Chang Choi ◽  
Young Seuk Park ◽  
Young Cheol Park ◽  
Ji Ho Seo ◽  
...  

Self-Organizing Maps (SOM) have been used for patterning and visualizing ten environmental parameters and phytoplankton biomass in a mactrotidal (>10 m) Gyeonggi Bay and artificial Shihwa Lake during 1986–2004. SOM segregated study areas into four groups and ten subgroups. Two strikingly alternative states are frequently observed: the first is a diverse non-eutrophic state designated by three groups (SOM 1–3), and the second is a eutrophic state (SOM 4: Shihwa Lake and Upper Gyeonggi Bay; summer season) characterized by enhanced nutrients (3 mg l−1 dissolved inorganic nitrogen, 0.1 mg l−1 PO4) that act as a signal and response to that signal as algal blooms (24 µg chlorophyll-a l−1). Bloom potential in response to nitrification is affiliated with high temperature (r = 0.26), low salinity (r = −0.40) and suspended solids (r = –0.27). Moreover, strong stratification in the Shihwa Lake has accelerated harmful algal blooms and hypoxia. The non-eutrophic states (SOM 1–3) are characterized by macro-tidal estuaries exhibiting a tolerance to pollution with nitrogen-containing nutrients and retarding any tendency toward stratification. SOM 1 (winter) is more distinct from SOM 4 due to higher suspended solids (>50 mg l−1) caused by resuspension that induces light limitation and low chlorophyll-a (<5 µg l−1). In addition, eutrophication-induced shifts in phytoplankton communities are noticed during all the seasons in Gyeonggi Bay. Overall, SOM showed high performance for visualization and abstraction of ecological data and could serve as an efficient ecological map that can specify blooming regions and provide a comprehensive view on the eutrophication process in a macrotidal estuary.


2021 ◽  
Author(s):  
Ofer Shamir ◽  
Chen Schwartz ◽  
Chaim Garfinkel ◽  
Nathan Paldor

&lt;p&gt;A yet unexplained feature of the tropical wavenumber-frequency spectrum is its parity distributions, i.e., the distribution of power between the meridionally symmetric and anti-symmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and anti-symmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber-frequency spectrum is biased towards its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land-sea contrast. On the other hand, by adding a small-scale (stochastic) forcing, we find that the parity distribution of the tropical spectrum is sensitive to asymmetries on small spatial scales compared to the observed large-scale spectrum. Physically, such forcing can be thought of as small-scale convection, which is believed to trigger some of the Tropics' large-scale features via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any small-scale asymmetry (symmetric or anti-symmetric) in the forcing leads to symmetric bias in the spectrum, regardless of the source of variability providing the forcing.&lt;/p&gt;


Author(s):  
M. Scholten ◽  
J. Kuiper ◽  
H. Het Van Groenewoud ◽  
G. Hoornsman ◽  
E. Van Der Vlies

Sign in / Sign up

Export Citation Format

Share Document