scholarly journals Design of a Fluidic Actuator with Independent Frequency and Amplitude Modulation for Control of Swirl Flame Dynamics

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 128
Author(s):  
Amrit Adhikari ◽  
Thorge Schweitzer ◽  
Finn Lückoff ◽  
Kilian Oberleithner

Fluidic actuators are designed to control the oscillatory helical mode, called a precessing vortex core (PVC), which is often observed in gas turbine combustors. The PVC induces large-scale hydrodynamic coherent structures, which can considerably affect flow and flame dynamics. Therefore, appropriate control of this structure can lead to a more stable and efficient combustion process. Currently available flow control systems are designed to control the PVC in laboratory-scale setups. To further develop these systems and find an approach applicable to the industrial scale, a new actuator design based on fluidic oscillators is presented and studied in this paper. This actuator allows for independently adjusting forcing frequency and amplitude, which is necessary to effectively target the dynamics of the PVC. The functionality and flow control of this actuator design are studied based on numerical simulations and experimental measurements. To verify the flow control authority, the actuator is built into a prototype combustor test rig, which allows for investigating the impact of the actuator’s forcing on the PVC at isothermal conditions. The studies conducted in this work prove the desired functionality and flow control authority of the 3D-printed actuator. Accordingly, a two-part stainless steel design is derived for future test conditions with flame.

Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The reduction of polluting NOx emission remains a driving factor in the design process of swirl-stabilized combustion systems, to meet strict legislative restrictions. In reacting swirl flows, hydrodynamic coherent structures, such as periodic large-scale vortices in the shear layer, induce zones with increased heat release rate fluctuations in connection with temperature peaks, which lead to an increase of NOx emissions. Such large-scale vortices can be induced by the helical coherent structure known as precessing vortex core (PVC), which influences the flow and flame dynamics of reacting swirl flows under certain operating conditions. We developed an active flow control system, which allows for a targeted actuation of the PVC, to investigate its impact on important combustion properties. In this study, the direct active flow control is used to actuate a PVC of arbitrary frequency and amplitude, which facilitates a systematic study of the impact of the PVC on NOx emissions. In the course of the present work, a perfectly premixed flame, which slightly damps the PVC, is studied in detail. Since the PVC is slightly damped, it can be precisely excited by means of open-loop flow control. In connection with time-resolved OH*-chemiluminescence and stereoscopic PIV measurements, the flame and flow response to PVC actuation as well as the impact of the actuated PVC on flow and flame dynamics are characterized. It turns out that the PVC rolls up the inner shear layer, which results in an interaction of PVC-induced vortices and flame. This interaction considerably influences the measured level of NOx emissions, which grow with increasing PVC amplitude in a perfectly premixed flame. Nearly the same increase is to be seen for a partially premixed flame. This in contrast to previous studies, where the PVC is assumed to reduce the NOx emissions due to vortex-enhanced mixing.


Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The precessing vortex core (PVC) is a helically shaped coherent flow structure that occurs in reacting and nonreacting swirling flows undergoing vortex breakdown. In swirl-stabilized combustors, the PVC affects important phenomena, such as turbulent mixing and thermoacoustic oscillations. In this work, a closed-loop flow control system is developed, which allows for phase-opposition control of the PVC, to achieve appropriate conditions to systematically investigate the influence of the PVC on turbulent flames. The control consists of a zero-net-mass-flux actuator placed in the mixing section of the combustor, where the PVC is most receptive to periodic forcing. The flow control system is characterized from pressure measurements and particle image velocimetry (PIV) and the impact on flame dynamics is extracted from OH*-chemiluminescence measurements. The data reveal that the PVC amplitude is considerably suppressed by the phase-opposition control without changing the overall characteristics of flow and flame, which is crucial to study the exclusive effect of the PVC on combustion processes. Moreover, the control allows the PVC amplitude to be adjusted gradually to investigate the PVC impact on turbulent mixing and flame dynamics. It is revealed that the PVC-induced flow fluctuations mainly affect the large-scale mixing, while the small scale mixing remains unchanged. This is because the suppression of the PVC allows other modes to become more dominant and the overall turbulent kinetic energy (TKE) budget remains unchanged. The destabilization of other modes, such as the axisymmetric mode, may have some implications on thermoacoustic instability.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The reduction of NOx emissions remains a driving factor in the design process of swirl-stabilized combustion systems, to meet legislative restrictions. In reacting swirl flows, hydrodynamic coherent structures, such as periodic large-scale vortices in the shear layer, induce zones with increased heat release rate fluctuations in connection with temperature peaks, which lead to an increase of NOx emissions. Such large-scale vortices can be induced by the helical coherent structure known as precessing vortex core (PVC), which influences the flow and flame dynamics under certain operating conditions. We developed an active flow control system, allowing for a targeted actuation of the PVC, to investigate its impact on combustion properties such as NOx emissions. In this work, a perfectly premixed flame, which slightly damps the PVC, is studied in detail. Since the PVC is slightly damped, it can be precisely excited by means of open-loop flow control. In connection with time-resolved OH*-chemiluminescence and stereoscopic particle image velocimetry (PIV) measurements, the impact of the actuated PVC on flow and flame dynamics is characterized. It turns out that the PVC rolls up the inner shear layer, which results in an interaction of PVC-induced vortices and flame. This interaction considerably influences the measured level of NOx emissions, which grows with increasing PVC amplitude in a perfectly premixed flame. Nearly, the same increase is measured for partially premixed conditions. This is in contrast to previous studies, where the PVC is assumed to reduce the NOx emissions due to vortex-enhanced mixing.


Author(s):  
Lothar Rukes ◽  
Moritz Sieber ◽  
C. Oliver Paschereit ◽  
Kilian Oberleithner

Swirling jets undergoing vortex breakdown are widely used in combustion applications, due to their ability to provide aerodynamic flame stabilization. It is well known that vortex breakdown is accompanied by a dominant coherent structure, the so called precessing vortex core (PVC). Reports on the impact of the PVC on the combustion process range from beneficial to detrimental. In any event, efficient methods for the analysis of the PVC help to increase the benefit or reduce the penalty resulting from it. This study uses Particle Image Velocimetry (PIV) measurements of a generic non-isothermal swirling jet to demonstrate the use of advanced data analysis techniques. In particular, the Finite Time Lyapunov Exponent (FTLE) and local linear stability analysis (LSA) are shown to reveal deep insight into the physical mechanisms that drive the PVC. Particularly, it is demonstrated that the PVC amplitude is strongly reduced, if heating is applied at the wavemaker of the flow. These techniques are complemented by the traditionally used Proper Orthogonal Decomposition (POD) and spatial correlation techniques. It is demonstrated how these methods complement each other and lead to a comprehensive understanding of the PVC that lays out the path to efficient control strategies.


Author(s):  
Lothar Rukes ◽  
Moritz Sieber ◽  
C. Oliver Pashereit ◽  
Kilian Oberleithner

Swirling jets undergoing vortex breakdown are widely used in combustion applications, due to their ability to provide aerodynamic flame stabilization. It is well known that vortex breakdown is accompanied by a dominant coherent structure, the so-called precessing vortex core (PVC). Reports on the impact of the PVC on the combustion process range from beneficial to detrimental. In any event, efficient methods for the analysis of the PVC help to increase the benefit or reduce the penalty resulting from it. This study uses particle image velocimetry (PIV) measurements of a generic nonisothermal swirling jet to demonstrate the use of advanced data analysis techniques. In particular, the finite time Lyapunov exponent (FTLE) and the local linear stability analysis (LSA) are shown to reveal deep insight into the physical mechanisms that drive the PVC. Particularly, it is demonstrated that the PVC amplitude is strongly reduced, if heating is applied at the wavemaker of the flow. These techniques are complemented by the traditionally used proper orthogonal decomposition (POD) and spatial correlation techniques. It is demonstrated how these methods complement each other and lead to a comprehensive understanding of the PVC that lays out the path to efficient control strategies.


Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The precessing vortex core is a helically-shaped coherent flow structure that occurs in reacting and non-reacting swirling flows undergoing vortex breakdown. In swirl-stabilized combustors, this flow structure affects important phenomena, such as turbulent mixing and thermoacoustic oscillations. In this work, a flow control system is developed to achieve appropriate conditions to systematically investigate the influence of the PVC on turbulent flames. The control consists of a zero-net-mass-flux actuator placed in the mixing section of the combustor, where the PVC is most receptive to periodic forcing. The actuator is driven in a closed loop to achieve phase-opposition control of the PVC. The flow control system is characterized from pressure measurements and particle image velocimetry and the impact on flame dynamics is extracted from OH*-chemiluminescence measurements. The data reveal that the PVC amplitude is considerably suppressed by the phase-opposition control without changing the overall characteristics of flow and flame. This is a very important requirement to study the exclusive effect of the PVC on combustion processes. Moreover, the control allows the PVC amplitude to be adjusted gradually to investigate the PVC impact on turbulent mixing and flame dynamics. It is revealed that the PVC-induced flow fluctuations mainly affect the large-scale mixing, while the small scale mixing remains unchanged. This is because the suppression of the PVC allows other modes to become more dominant and the overall turbulent kinetic energy budget remains unchanged. The destabilization of other modes, such as the axisymmetric mode, may have some implications on thermoacoustic instability.


Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Kilian Oberleithner

In this study, we apply periodic flow excitation of the PVC at the centerbody of a generic swirl-stabilized combustor to investigate the impact of the precessing vortex core (PVC) on flame shape and flame dynamics. Previous studies revealed considerable influence of the PVC on combustion properties such as flame dynamics and fuel/air mixing. We employ time-resolved OH*-chemiluminescence and pressure measurements to investigate the influence of the PVC on flame dynamics and flame shape transition. The PVC is typically present in flames which are detached from the burner outlet. This lift-off is observed for increasingly lean mixtures in this study. With the help of the PVC actuation, studied in this work, the transition point between attached and detached flame is shifted towards richer mixtures. Moreover, the dynamics of heat release rate fluctuations that are related to PVC and thermoacoustic instabilities are extracted from the OH*-chemiluminescence data. This reveals a considerable damping of the thermoacoustic oscillations due to the PVC actuation under technically premixed conditions and the rise of additional modes due to the interaction of both dynamics.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Ivan Yakovenko ◽  
Alexey Kiverin ◽  
Ksenia Melnikova

Development of the combustion process in the gaseous mixtures of near-limit composition is of great interest for fundamental aspects of combustion theory and fire-safety applications. The dynamics of ultra-lean gaseous flames in near-limit mixtures is governed by many effects, such as buoyancy, preferential diffusion, radiation, and instability development. Though ultra-lean combustion was extensively studied in microgravity conditions, the influence of gravity on the ultra-lean flame structure and stability is still poorly understood. The paper is devoted to deepening the knowledge of ultra-lean flame dynamics in hydrogen-air mixtures under terrestrial gravity conditions. The spatial structures of the flame developing under the effect of buoyancy forces are investigated employing detailed numerical analysis. Different modes of near-limit flame evolution are observed depending on the mixture concentration. In particular, we registered and described three distinct spatial structures: individual kernels tending to extinguish in leanest compounds, complex multi-kernel structures in marginal compositions, and stable cap-shaped flames in more chemically active mixtures. We apply the flame-bubble analogy to interpret flame dynamics. On this basis, the diagram in the Re-Fr plane is developed. That allows classifying the emerging flame structures and determine flame stability. Additionally, different ignition modes are studied, and the mechanisms determining the impact of ignition mode on the flammability limits are distinguished. Obtained results provide useful insights into the processes of flame quenching and development in near-limit hydrogen-air mixtures under real gravity conditions and can be applied in the design of contemporary fire-safety systems.


2020 ◽  
Vol 59 (04) ◽  
pp. 294-299 ◽  
Author(s):  
Lutz S. Freudenberg ◽  
Ulf Dittmer ◽  
Ken Herrmann

Abstract Introduction Preparations of health systems to accommodate large number of severely ill COVID-19 patients in March/April 2020 has a significant impact on nuclear medicine departments. Materials and Methods A web-based questionnaire was designed to differentiate the impact of the pandemic on inpatient and outpatient nuclear medicine operations and on public versus private health systems, respectively. Questions were addressing the following issues: impact on nuclear medicine diagnostics and therapy, use of recommendations, personal protective equipment, and organizational adaptations. The survey was available for 6 days and closed on April 20, 2020. Results 113 complete responses were recorded. Nearly all participants (97 %) report a decline of nuclear medicine diagnostic procedures. The mean reduction in the last three weeks for PET/CT, scintigraphies of bone, myocardium, lung thyroid, sentinel lymph-node are –14.4 %, –47.2 %, –47.5 %, –40.7 %, –58.4 %, and –25.2 % respectively. Furthermore, 76 % of the participants report a reduction in therapies especially for benign thyroid disease (-41.8 %) and radiosynoviorthesis (–53.8 %) while tumor therapies remained mainly stable. 48 % of the participants report a shortage of personal protective equipment. Conclusions Nuclear medicine services are notably reduced 3 weeks after the SARS-CoV-2 pandemic reached Germany, Austria and Switzerland on a large scale. We must be aware that the current crisis will also have a significant economic impact on the healthcare system. As the survey cannot adapt to daily dynamic changes in priorities, it serves as a first snapshot requiring follow-up studies and comparisons with other countries and regions.


Sign in / Sign up

Export Citation Format

Share Document