scholarly journals A CFD Tutorial in Julia: Introduction to Compressible Laminar Boundary-Layer Flows

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 400
Author(s):  
Furkan Oz ◽  
Kursat Kara

A boundary-layer is a thin fluid layer near a solid surface, and viscous effects dominate it. The laminar boundary-layer calculations appear in many aerodynamics problems, including skin friction drag, flow separation, and aerodynamic heating. A student must understand the flow physics and the numerical implementation to conduct successful simulations in advanced undergraduate- and graduate-level fluid dynamics/aerodynamics courses. Numerical simulations require writing computer codes. Therefore, choosing a fast and user-friendly programming language is essential to reduce code development and simulation times. Julia is a new programming language that combines performance and productivity. The present study derived the compressible Blasius equations from Navier–Stokes equations and numerically solved the resulting equations using the Julia programming language. The fourth-order Runge–Kutta method is used for the numerical discretization, and Newton’s iteration method is employed to calculate the missing boundary condition. In addition, Burgers’, heat, and compressible Blasius equations are solved both in Julia and MATLAB. The runtime comparison showed that Julia with for loops is 2.5 to 120 times faster than MATLAB. We also released the Julia codes on our GitHub page to shorten the learning curve for interested readers.

2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 207
Author(s):  
Furkan Oz ◽  
Kursat Kara

Numerical simulations of laminar boundary-layer equations are used to investigate the origins of skin-friction drag, flow separation, and aerodynamic heating concepts in advanced undergraduate- and graduate-level fluid dynamics/aerodynamics courses. A boundary-layer is a thin layer of fluid near a solid surface, and viscous effects dominate it. Students must understand the modeling of flow physics and implement numerical methods to conduct successful simulations. Writing computer codes to solve equations numerically is a critical part of the simulation process. Julia is a new programming language that is designed to combine performance and productivity. It is dynamic and fast. However, it is crucial to understand the capabilities of a new programming language before attempting to use it in a new project. In this paper, fundamental flow problems such as Blasius, Hiemenz, Homann, and Falkner-Skan flow equations are derived from scratch and numerically solved using the Julia language. We used the finite difference scheme to discretize the governing equations, employed the Thomas algorithm to solve the resulting linear system, and compared the results with the published data. In addition, we released the Julia codes in GitHub to shorten the learning curve for new users and discussed the advantages of Julia over other programming languages. We found that the Julia language has significant advantages in productivity over other coding languages. Interested readers may access the Julia codes on our GitHub page.


2011 ◽  
Vol 687 ◽  
pp. 171-193 ◽  
Author(s):  
J. M. Lopez ◽  
F. Marques

AbstractA librating cylinder consists of a rotating cylinder whose rate of rotation is modulated. When the mean rotation rate is large compared with the viscous damping rate, the flow may support inertial waves, depending on the frequency of the modulation. The modulation also produces time-dependent boundary layers on the cylinder endwalls and sidewall, and the sidewall boundary layer flow in particular is susceptible to instabilities which can introduce additional forcing on the interior flow with time scales different from the modulation period. These instabilities may also drive and/or modify the inertial waves. In this paper, we explore such flows numerically using a spectral-collocation code solving the Navier–Stokes equations in order to capture the dynamics involved in the interactions between the inertial waves and the viscous boundary layer flows.


1971 ◽  
Vol 48 (2) ◽  
pp. 209-228 ◽  
Author(s):  
D. R. Kassoy

Several examples of incipient blow-off phenomena described by the compressible similar laminar boundary-layer equations are considered. An asymptotic technique based on the limit of small wall shear, and the use of a novel form of Prandtl's transposition theorem, leads to a complete analytical description of the blow-off behaviour. Of particular interest are the results for overall boundarylayer thickness, which imply that, for a given large Reynolds number, classical theory fails for a sufficiently small wall shear. A derivation of a new distinguished limit of the Navier–Stokes equations, the use of which will lead to uniformly valid solutions to blow-off type problems for Re → ∞, is included. A solution for uniform flow past a flat plate with classical similarity type injection, based on the new limit, is presented. It is shown that interaction of the injectant layers and the external flow results in a favourable pressure gradient, which precludes the classical blow-off catastrophy.


1971 ◽  
Vol 22 (2) ◽  
pp. 196-206 ◽  
Author(s):  
T. S. Cham

SummaryA study is made of the interaction of a combination of free-vortex and source flow with a stationary surface. The laminar boundary layer flow can be expressed in ordinary differential equations by choosing suitable similarity transforms for the Navier-Stokes equations. When simplifying boundary-layer approximations are included, the equations do not yield any unique solution. Solutions to the complete equations are calculated numerically for the special case of equal source and vortex strengths for a limited range of Reynolds number. The results show the presence of “super” velocities and large pressure variations within the viscous layer.


Sign in / Sign up

Export Citation Format

Share Document